Frightening Factorial

Algebra Level 3

3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + 5 3 ! + 4 ! + 5 ! + + 10005 10003 ! + 10004 ! + 10005 ! = 1 λ ! 1 μ ! \small \frac{3}{1!+2!+3!}+ \frac{4}{2!+3!+4!} + \frac{5}{3!+4!+5!} +\cdots + \frac{10005}{10003!+10004!+10005!} = \frac{1}{\lambda!} - \frac{1}{\mu!}

If the equation above holds true for some positive integers λ \lambda and μ \mu , find λ + μ \lambda + \mu .

Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 10007.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Presenting @Dhanvanth Balakrishnan 's solution in another way.

S = k = 1 10003 k + 2 k ! + ( k + 1 ) ! + ( k + 2 ) ! = k = 1 10003 k + 2 k ! ( 1 + k + 1 ) + ( k + 2 ) ! = k = 1 10003 k + 2 k ! ( k + 2 ) + ( k + 2 ) ! = k = 1 10003 k + 2 ( k + 2 ) ( k ! + ( k + 1 ) ! ) = k = 1 10003 1 k ! + ( k + 1 ) ! = k = 1 10003 1 k ! ( 1 + k + 1 ) = k = 1 10003 1 k ! ( k + 2 ) = k = 1 10003 k + 1 k ! ( k + 1 ) ( k + 2 ) = k = 1 10003 k + 1 ( k + 2 ) ! = k = 1 10003 k + 2 1 ( k + 2 ) ! = k = 1 10003 ( 1 ( k + 1 ) ! 1 ( k + 2 ) ! ) = 1 2 ! 1 10005 ! \begin{aligned} S & = \sum_{k=1}^{10003} \frac {k+2}{k!+(k+1)!+(k+2)!} \\ & = \sum_{k=1}^{10003} \frac {k+2}{k!(1+k+1)+(k+2)!} \\ & = \sum_{k=1}^{10003} \frac {k+2}{k!(k+2)+(k+2)!} \\ & = \sum_{k=1}^{10003} \frac {k+2}{(k+2)(k!+(k+1)!)} \\ & = \sum_{k=1}^{10003} \frac 1{k!+(k+1)!} \\ & = \sum_{k=1}^{10003} \frac 1{k!(1+k+1)} \\ & = \sum_{k=1}^{10003} \frac 1{k!(k+2)} \\ & = \sum_{k=1}^{10003} \frac {k+1}{k!(k+1)(k+2)} \\ & = \sum_{k=1}^{10003} \frac {k+1}{(k+2)!} \\ & = \sum_{k=1}^{10003} \frac {k+2-1}{(k+2)!} \\ & = \sum_{k=1}^{10003} \left(\frac 1{(k+1)!} - \frac 1{(k+2)!} \right) \\ & = \frac 1{2!} - \frac 1{10005!} \end{aligned}

λ + μ = 2 + 10005 = 10007 \implies \lambda + \mu = 2+10005 = \boxed{10007}

First,let us find the general term of the series.

So,the general term is

t n t_{n} = n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! \frac{n+2}{n!+(n+1)!+(n+2)!}

Let us simplify the general term,

t n t_{n} = n + 2 n ! ( 1 + ( n + 1 ) + ( n + 2 ) ( n + 1 ) ) \frac{n+2}{n!(1+(n+1)+(n+2)(n+1))}

t n t_{n} = n + 2 n ! ( n + 2 + ( n + 2 ) ( n + 1 ) ) \frac{n+2}{n!(n+2+(n+2)(n+1))}

t n t_{n} = n + 2 n ! ( n + 2 ) ( n + 2 ) \frac{n+2}{n!(n+2)(n+2)}

t n t_{n} = 1 n ! ( n + 2 ) \frac{1}{n!(n+2)}

Multiplying the numerator and denominator with n+1,

t n t_{n} = n + 1 ( n + 2 ) ! \frac{n+1}{(n+2)!}

t n t_{n} = n + 2 1 ( n + 2 ) ! \frac{n+2-1}{(n+2)!}

t n t_{n} = 1 ( n + 1 ) ! \frac{1}{(n+1)!} - 1 ( n + 2 ) ! \frac{1}{(n+2)!}

Now , we can substitute the values of n in the general term.

= 1 2 ! \frac{1}{2!} - 1 3 ! \frac{1}{3!} + 1 3 ! \frac{1}{3!} - 1 4 ! \frac{1}{4!} . . . ... - 1 10005 ! \frac{1}{10005!}

= 1 2 ! \frac{1}{2!} - 1 10005 ! \frac{1}{10005!}

So,

λ λ = 2 2

μ μ = 10005 10005

Therefore,

λ λ + μ μ = 10007 \boxed{10007}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...