Frog is jumping infinitively - hard

Calculus Level 3

A frog sees a dead fly at the ground in some distance and jumps in consecutive jumps towards it. The trajectory of the frog can be modelled by parabolas . The horizontal length and the maximum height of each jump form a geometric progression , such that each jump will have 3/4 length and 2/3 height of the previous jump and the frog will reach the fly in ∞ jumps . After the first jump the frog travelled 4 cm horizontally and passed through a maximum at P (2|1) .

Calculate the length of the whole trajectory of all jumps till the frog reaches the fly.

Note: You may need to use a CAS for computations


The answer is 17.489.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joseph Newton
Sep 26, 2018

Let each parabola y n y_n (starting from n = 0 n=0 ) be centred at the origin with the vertex at ( 0 , h n ) (0,h_n) where h n h_n is the maximum height of the jump, and cutting the x-axis at l n 2 \frac {l_n}2 and l n 2 -\frac {l_n}2 where l n l_n is the horizontal length of the jump. This gives each parabola the following equation, which can be found by letting y = a x 2 + b y=ax^2+b and finding appropriate values for a a and b b such that the above conditions hold. y n = h n ( 1 4 x 2 l n 2 ) y_n=h_n\left(1-\frac{4x^2}{l_n^2}\right) l 0 = 4 l_0=4 , and l n = 3 4 l n 1 l_n=\frac34l_{n-1} , therefore l n = 4 ( 3 4 ) n l_n=4\left(\frac34\right)^n

h 0 = 1 h_0=1 , and h n = 2 3 h n 1 h_n=\frac23h_{n-1} , therefore h n = ( 2 3 ) n h_n=\left(\frac23\right)^n y n = ( 2 3 ) n ( 1 4 x 2 ( 4 ( 3 4 ) n ) 2 ) = ( 2 3 ) n ( 2 3 ) n ( 16 9 ) n 4 x 2 16 = ( 2 3 ) n ( 32 27 ) n x 2 4 \begin{aligned}\therefore y_n&=\left(\frac23\right)^n\left(1-\frac{4x^2}{\left(4\left(\frac34\right)^n\right)^2}\right)\\ &=\left(\frac23\right)^n-\left(\frac23\right)^n\left(\frac{16}9\right)^n\frac{4x^2}{16}\\ &=\left(\frac23\right)^n-\left(\frac{32}{27}\right)^n\frac{x^2}{4}\end{aligned}

Now, the formula for arc length is a b ( f ( x ) ) 2 + 1 d x \int_a^b\sqrt{(f'(x))^2+1}dx . Call the length of the trajectory of one parabola T n T_n . T n = l n 2 l n 2 ( d y n d x ) 2 + 1 d x = 2 0 l n 2 ( ( 32 27 ) n x 2 ) 2 + 1 d x = 2 0 2 ( 3 4 ) n ( 32 27 ) 2 n x 2 4 + 1 = ( 32 27 ) n 0 2 ( 3 4 ) n x 2 + 4 ( 27 32 ) 2 n = ( 32 27 ) n [ x 2 x 2 + 4 ( 27 32 ) 2 n + 2 ( 27 32 ) 2 n ln x + x 2 + 4 ( 27 32 ) 2 n ] 0 2 ( 3 4 ) n using x 2 + a 2 = x 2 x 2 + a 2 + a 2 2 ln x + x 2 + a 2 = ( 3 4 ) n ( 32 27 ) n 4 ( 9 16 ) n + 4 ( 27 32 ) 2 n + 2 ( 27 32 ) n ln ( 2 ( 3 4 ) n + 4 ( 9 16 ) n + 4 ( 27 32 ) 2 n ) 2 ( 27 32 ) n ln ( 2 ( 27 32 ) n ) = 2 ( 3 4 ) n 1 + ( 9 8 ) 2 n + 2 ( 27 32 ) n ln ( ( 8 9 ) n + 1 + ( 8 9 ) 2 n ) \begin{aligned}T_n&=\int_{-\frac{l_n}2}^{\frac{l_n}2}\sqrt{\left(\frac{dy_n}{dx}\right)^2+1}dx\\ &=2\int_0^{\frac{l_n}2}\sqrt{\left(-\left(\frac{32}{27}\right)^n\frac{x}{2}\right)^2+1}dx\\ &=2\int_0^{2\left(\frac34\right)^n}\sqrt{\left(\frac{32}{27}\right)^{2n}\frac{x^2}{4}+1}\\ &=\left(\frac{32}{27}\right)^n\int_0^{2\left(\frac34\right)^n}\sqrt{x^2+4\left(\frac{27}{32}\right)^{2n}}\\ &=\left(\frac{32}{27}\right)^n\left[\frac x2\sqrt{x^2+4\left(\frac{27}{32}\right)^{2n}}+2\left(\frac{27}{32}\right)^{2n}\ln\left|x+\sqrt{x^2+4\left(\frac{27}{32}\right)^{2n}}\right|\right]_0^{2\left(\frac34\right)^n}\quad\small\text{using }\int\sqrt{x^2+a^2}=\frac x2\sqrt{x^2+a^2}+\frac{a^2}2\ln\left|x+\sqrt{x^2+a^2}\right|\\ &=\left(\frac34\right)^n\left(\frac{32}{27}\right)^n\sqrt{4\left(\frac9{16}\right)^n+4\left(\frac{27}{32}\right)^{2n}}+2\left(\frac{27}{32}\right)^n\ln\left(2\left(\frac34\right)^n+\sqrt{4\left(\frac9{16}\right)^n+4\left(\frac{27}{32}\right)^{2n}}\right)-2\left(\frac{27}{32}\right)^n\ln\left(2\left(\frac{27}{32}\right)^n\right)\\ &=2\left(\frac34\right)^n\sqrt{1+\left(\frac98\right)^{2n}}+2\left(\frac{27}{32}\right)^n\ln\left(\left(\frac89\right)^n+\sqrt{1+\left(\frac89\right)^{2n}}\right)\end{aligned}

The total length of the trajectory of the frog will be n = 0 T n \displaystyle\sum_{n=0}^\infty T_n , but since this is rather complicated we may just evaluate this with a computer program, and get a result of 17.489 \boxed{17.489}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...