From 0 to \infty

Calculus Level 3

0 e ( 1 + 1 x ) x d x = ? \int_0^\infty e- \left(1+\frac 1x\right)^x dx=?

e e e 2 \frac e2 \infty e 2 e^2 2 e 2e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
May 6, 2018

lim x e ( 1 + 1 x ) x 1 x = e 2 \displaystyle\lim_{x\to\infty}\frac{e- \left(1+\frac 1x\right)^x}{\frac1x}=\frac e2 ,so 0 1 e ( 1 + 1 x ) x d x + 1 e ( 1 + 1 x ) x d x e 2 1 1 x d x = \displaystyle\int_0^1 e- \left(1+\frac 1x\right)^x dx+\int_1^\infty e- \left(1+\frac 1x\right)^x dx\approx \frac e2\int_1^\infty \frac1x dx=\infty

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...