From 1 1 to infinit- e e

Calculus Level 3

n = 1 e ( 4 n 2 2 n ) = ? \large \prod_{n=1}^\infty \sqrt[(4n^2-2n)]{e}= ?

Note : If you do not think the above product converges, enter 42 42 as your answer.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Jul 29, 2017

P = n = 1 e 4 n 2 2 n = n = 1 e 1 4 n 2 2 n = exp ( n = 1 1 4 n 2 2 n ) = exp [ n = 1 ( 1 2 n 1 1 2 n ) ] = exp ( n = 1 ( 1 ) n + 1 n ) = exp ( ln 2 ) = 2 \displaystyle \begin{aligned} P & = \prod_{n \ = \ 1}^{\infty} \sqrt[4n^2 - 2n]{e} \\ & = \prod_{n \ = \ 1}^{\infty} e^{\frac{1}{4n^2 - 2n}} \\ & = \exp\left(\sum_{n \ = \ 1}^{\infty} \frac{1}{4n^2 - 2n}\right) \\ & = \exp\Bigg[\sum_{n \ = \ 1}^{\infty} \left( \frac{1}{2n - 1} - \frac{1}{2n} \right)\Bigg] \\ & = \exp\left(\sum_{n \ = \ 1}^{\infty} \frac{(- 1)^{n + 1}}{n}\right) \\ & = \exp\left(\ln 2\right) \\ & = \boxed{2} \end{aligned}

You left out ln \ln in lines 3 through 5.

Chew-Seong Cheong - 3 years, 10 months ago

Log in to reply

Sorry, my mistake.

Chew-Seong Cheong - 3 years, 10 months ago

Log in to reply

No worries :)

Zach Abueg - 3 years, 10 months ago
Arthur Conmy
Jul 29, 2017

This problem was the product of my curiousity:

I pondered 1 1 2 + 1 3 1 4 + . . . = ln ( 2 ) 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+-...=\ln(2) :

e 1 1 2 + 1 3 1 4 + . . . = 2 e^{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+-...}=2

e 1 × e 1 2 × e 1 3 × e 1 4 . . . = 2 e^1 \times e^{-\frac{1}{2}} \times e^{\frac{1}{3}} \times e^{-\frac{1}{4}}... =2

exp ( 1 ) × 1 exp ( 1 2 ) × exp ( 1 3 ) × 1 exp ( 1 4 ) . . . = 2 \exp(1) \times \frac{1}{\exp({\frac{1}{2})}} \times \exp({\frac{1}{3}}) \times \frac{1}{\exp({\frac{1}{4}})}... =2

exp ( 1 ) exp ( 1 2 ) × exp ( 1 3 ) exp ( 1 4 ) × exp ( 1 5 ) exp ( 1 6 ) × . . . = 2 \frac{\exp(1)}{\exp({\frac{1}{2}})} \times \frac{\exp(\frac{1}{3})}{\exp({\frac{1}{4}})} \times \frac{\exp(\frac{1}{5})}{\exp({\frac{1}{6}})} \times ... = 2

exp ( 1 1 2 ) × exp ( 1 3 1 4 ) × exp ( 1 5 1 6 ) × . . . = 2 \exp({1-\frac{1}{2}}) \times \exp({\frac{1}{3}-\frac{1}{4}}) \times \exp({\frac{1}{5}-\frac{1}{6}}) \times ... = 2

n = 1 exp ( 1 2 n 1 1 2 n ) = 2 \displaystyle \prod_{n=1}^\infty \exp(\frac{1}{2n-1}-\frac{1}{2n})=2

Now, 1 2 n 1 1 2 n = 1 4 n 2 2 n \frac{1}{2n-1}-\frac{1}{2n}=\frac{1}{4n^2-2n} so

n = 1 exp ( 1 4 n 2 2 n ) = 2 \displaystyle \prod_{n=1}^\infty \exp(\frac{1}{4n^2-2n})=2

and finally n = 1 e ( 4 n 2 2 n ) = 2 \large \displaystyle \prod_{n=1}^\infty \sqrt[(4n^2-2n)]{e}= \boxed{2}

Hmm the * 's and powers of e e have not come out great. Any advice?

Arthur Conmy - 3 years, 10 months ago

Log in to reply

Instead of *s use \times latex tag or simply put a dot. For series' enclosed in an exponent you can simply use \exp, because the size of the fractions reduces considerably while using normal latex tags of \frac within the exponent part.

Swagat Panda - 3 years, 10 months ago

Log in to reply

Thank you very much Swagat. Both changes implemented.

Arthur Conmy - 3 years, 10 months ago

That's indeed impressive. : )

Naren Bhandari - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...