From 29 to 27, real quick!

Algebra Level 5

x + 8 29 + x + 9 29 + x + 10 29 + x + 11 29 + x + 12 29 = 25 \large \left \lfloor x + \frac{8}{29} \right \rfloor + \left\lfloor x + \frac{9}{29}\right \rfloor +\left\lfloor x + \frac{10}{29}\right \rfloor +\left\lfloor x + \frac{11}{29}\right \rfloor +\left\lfloor x + \frac{12}{29} \right\rfloor = 25

Find the sum of all possible values of 27 x \lfloor 27x \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 3324.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Manuel Kahayon
Dec 23, 2016

We can see that as long as 4 + 21 29 x < 5 + 17 29 4 + \frac{21}{29} \leq x < 5+\frac{17}{29} , this equality is satisfied.

Now, we can see that 27 ( 4 + 21 29 ) 27 x < 27 ( 5 + 17 29 ) 27(4 + \frac{21}{29}) \leq 27x < 27(5+\frac{17}{29}) , and taking the floor function of this inequality gives us

127.55 27 x 150.82 \lfloor 127.55 \rfloor \leq \lfloor 27x \rfloor \leq \lfloor 150.82 \rfloor

Giving us 127 27 x 150 127 \leq \lfloor 27x \rfloor \leq 150

And we just need to get the sum of all the natural numbers in this range, i.e.

( 150 127 + 1 ) ( 150 + 127 ) 2 = 3324 \large \frac{(150 - 127 + 1)(150 + 127)}{2} = \boxed{3324}

B l u e c o l o r s h o w s u s e o f K e i s a n O n l i n e C a l c u l a t o r . S i n c e t h e d i f f e r e n c e b e t w e e n t h e X + 12 29 a n d X + 4 29 = 0.137931 < 1 f o r a g i v e n X , w e s e e t h a t X + 12 29 X + 4 29 = 0 o r 1. I f i t i s 1 f o r X r , t h e n i t i s n o t 1 f o r X r 1 o r X r + 1 . T h i s w o u l d n o t s a t i s f y t h e g i v e n e q u a t i o n . F o r a g i v e n X e a c h t e r m h a s a v a l u e = 25 / 5 = 5. S o t h e r a n g e o f X h a s l o w e r a n d U p p e r b o u n d s a s 5 8 29 = 4 21 29 a n d 5 12 29 = 4 17 29 . B u t 27 ( 5 + 17 29 ) = 150.8275. a n d 150.8275 < 150.8275. b o t h b o u n d a r i e s a r e i n c l u d e d . . t h e r e w i l l b e 26 s t e p s T o t a l = s u m f ( 0 , 25 , i n t ( ( 4 + ( 21 + x ) / 29 ) 27 ) ) = 3607 . B u t i t m a y c o n t a i n s o m e d u p l i c a t i o n S o w e c h e c k a l l 26 s t e p s . i n t ( ( 4 + ( 21 + x ) / 29 ) 27 ) x = 0 , 1 , 26 x f ( x ) 0 127 , 1 128 , 2 129 , 3 130 , 4 131 , 5 132 , 6 133 , 7 134 , 8 135 , 9 135 , 10 136 , 11 137 , 12 138 , 13 139 , 14 140 , 15 141 , 16 142 , 17 143 , 18 144 , 19 145 , 20 146 , 21 147 , 22 148 , 23 148 , 24 149 , 25 150 , 135 a n d 148 a r e r e p e a t s . 135 + 148 = 283. S o 27 x = 3607 283 = 3324. O R W e m a y n o t u s e f u n c t i o n s u m f ( 0 , 25 , i n t ( ( 4 + ( 21 + x ) / 29 ) 27 ) ) , a n d a d d a l l f r o m t h e l i s t n e g l e c t i n g o n e i f i t i s d u p l i c a t e d . T o t a l = 127 t o 150 = 1 2 ( 150 127 + 1 ) ( 150 + 127 ) = 3324. Blue~ color~shows~use~of~Keisan~ Online~ Calculator.\\ Since~the~difference~between~the~ ~X+\frac {12}{29}~and~X+\frac {4}{29} =0.137931<1~for~a~given~X,\\ we~ see~ that~ \lfloor{X+\frac {12}{29}} \rfloor~-~ \lfloor{X+\frac {4}{29}} \rfloor=0~or~1.\\ If~it~is~1~for~X_r ,~then~it~is~not~1~for ~X_{r-1}~or~X_{r+1}. ~This~would~not~satisfy~the~given~equation.\\ \therefore ~For~a~given~X~each~term~has ~a~value=~25/5=5.\\ So~the~range~of~X~has~lower~and~Upper~bounds~as~5~-~\frac8{29}=4\frac{21}{29}~and~5~-~\frac{12}{29}=4\frac{17}{29}.\\ But~27*(5+\frac{17}{29})=150.8275. ~and~\lfloor{150.8275}\rfloor<150.8275. \\ \therefore~both~boundaries ~are~included.~~. \implies~ there ~will~be ~26~steps\\ ~~~\\ Total={\color{#3D99F6}{sum_f(0,25,int((4+(21+x)/29)*27))={\color{#D61F06}{3607}}.}}\\ But~ it~ may~ contain~ some ~duplication~~So~we~check~all ~26~steps.\\ ~~~\\ \color{#3D99F6}{int((4+(21+x)/29)*27) \\ x=0,1,26 } \\ ~~\\ ~~x~~~f(x)~~~~~~||~~0~~~127,~~~~~~||~~1~~~128,~~~~~~||~~2~~~129,~~~~~~||~~3~~~130,~~~~~~||~~4~~~131,~~~~~~||~~5~~~ 132,~~~~~~||~~6~~~133,~~~~~~||~~7~~~134,~~~~~~||~~8~~~135,~~~~~~||\\ ~~9~~~{\color{#D61F06}{135}},~~~~~~||10~~~136,~~~~~~|| 11~~~137,~~~~~~||12~~~138,~~~~~~||13~~~139,~~~~~~||14~~~140,~~~~~~||15~~~141,~~~~~~||16~~~142,~~~~~~|| 17~~~143,~~~~~~||18~~~144,~~~~~~||\\ 19~~~145,~~~~~~|| 20~~~146,~~~~~~||21~~~147,~~~~~~||22~~~148,~~~~~~||23~~~{\color{#D61F06}{148}},~~~~~~||24~~~149,~~~~~~||25~~~150 ,~~~~~~|| \\ ~~\\ 135~~and~~148~are~repeats.~~135+148=283.\\ So~ \sum \lfloor{27x}\rfloor=3607~-~283=\Large \color{#3D99F6}{3324}. \\ ~~~~\\ OR\\ ~~\\ We ~may~ not~ use~function~sum_f(0,25,int((4+(21+x)/29)*27)),\\ and~add~all~from~the~list~neglecting~one~~if~it~is~duplicated.\\ Total=127~~to~~150=\frac 1 2* (150-127+1)(150+127)=3324. \\
~~~~~
There are two repeats. Is it because 29-27=2 ? No. it is only coincident.

Niranjan Khanderia - 2 years, 1 month ago

T h e a b o v e w o u l d n o t c o m p i l e w i t h o u t t h i s ! ! ! The ~above~would~ not~ compile~ without~ this~ !!!

Niranjan Khanderia - 2 years, 1 month ago

I was not able to understand why "And we just need to get the sum of all the natural numbers in this range". Though it is true.

Niranjan Khanderia - 2 years, 1 month ago

at this moment, let's forget the floor function 29 5 x + 50 = 29 25 = 725 145 x = 675 x = 675 145 = 135 29 29 \cdot 5x + 50 = 29 \cdot 25 = 725 \Rightarrow 145x = 675 \Rightarrow x = \frac{675}{145} = \frac{135}{29} , but in this case, substituing in the equation above, we get 23 = 25 23 = 25 (Remember 29 5 = 145 29 \cdot 5 = 145 ) so this solution for x is impossible, so the first step is x 137 29 x \ge \frac{137}{29} (Remember 29 5 = 145 29 \cdot 5 = 145 ). Now 29 6 = 174 x < 162 29 29 \cdot 6 = 174 \Rightarrow x < \frac{162}{29} . The rest is the same as Manuel Kahayon...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...