⌊ x + 2 9 8 ⌋ + ⌊ x + 2 9 9 ⌋ + ⌊ x + 2 9 1 0 ⌋ + ⌊ x + 2 9 1 1 ⌋ + ⌊ x + 2 9 1 2 ⌋ = 2 5
Find the sum of all possible values of ⌊ 2 7 x ⌋ .
Notation: ⌊ ⋅ ⌋ denotes the floor function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
B
l
u
e
c
o
l
o
r
s
h
o
w
s
u
s
e
o
f
K
e
i
s
a
n
O
n
l
i
n
e
C
a
l
c
u
l
a
t
o
r
.
S
i
n
c
e
t
h
e
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
t
h
e
X
+
2
9
1
2
a
n
d
X
+
2
9
4
=
0
.
1
3
7
9
3
1
<
1
f
o
r
a
g
i
v
e
n
X
,
w
e
s
e
e
t
h
a
t
⌊
X
+
2
9
1
2
⌋
−
⌊
X
+
2
9
4
⌋
=
0
o
r
1
.
I
f
i
t
i
s
1
f
o
r
X
r
,
t
h
e
n
i
t
i
s
n
o
t
1
f
o
r
X
r
−
1
o
r
X
r
+
1
.
T
h
i
s
w
o
u
l
d
n
o
t
s
a
t
i
s
f
y
t
h
e
g
i
v
e
n
e
q
u
a
t
i
o
n
.
∴
F
o
r
a
g
i
v
e
n
X
e
a
c
h
t
e
r
m
h
a
s
a
v
a
l
u
e
=
2
5
/
5
=
5
.
S
o
t
h
e
r
a
n
g
e
o
f
X
h
a
s
l
o
w
e
r
a
n
d
U
p
p
e
r
b
o
u
n
d
s
a
s
5
−
2
9
8
=
4
2
9
2
1
a
n
d
5
−
2
9
1
2
=
4
2
9
1
7
.
B
u
t
2
7
∗
(
5
+
2
9
1
7
)
=
1
5
0
.
8
2
7
5
.
a
n
d
⌊
1
5
0
.
8
2
7
5
⌋
<
1
5
0
.
8
2
7
5
.
∴
b
o
t
h
b
o
u
n
d
a
r
i
e
s
a
r
e
i
n
c
l
u
d
e
d
.
.
⟹
t
h
e
r
e
w
i
l
l
b
e
2
6
s
t
e
p
s
T
o
t
a
l
=
s
u
m
f
(
0
,
2
5
,
i
n
t
(
(
4
+
(
2
1
+
x
)
/
2
9
)
∗
2
7
)
)
=
3
6
0
7
.
B
u
t
i
t
m
a
y
c
o
n
t
a
i
n
s
o
m
e
d
u
p
l
i
c
a
t
i
o
n
S
o
w
e
c
h
e
c
k
a
l
l
2
6
s
t
e
p
s
.
i
n
t
(
(
4
+
(
2
1
+
x
)
/
2
9
)
∗
2
7
)
x
=
0
,
1
,
2
6
x
f
(
x
)
∣
∣
0
1
2
7
,
∣
∣
1
1
2
8
,
∣
∣
2
1
2
9
,
∣
∣
3
1
3
0
,
∣
∣
4
1
3
1
,
∣
∣
5
1
3
2
,
∣
∣
6
1
3
3
,
∣
∣
7
1
3
4
,
∣
∣
8
1
3
5
,
∣
∣
9
1
3
5
,
∣
∣
1
0
1
3
6
,
∣
∣
1
1
1
3
7
,
∣
∣
1
2
1
3
8
,
∣
∣
1
3
1
3
9
,
∣
∣
1
4
1
4
0
,
∣
∣
1
5
1
4
1
,
∣
∣
1
6
1
4
2
,
∣
∣
1
7
1
4
3
,
∣
∣
1
8
1
4
4
,
∣
∣
1
9
1
4
5
,
∣
∣
2
0
1
4
6
,
∣
∣
2
1
1
4
7
,
∣
∣
2
2
1
4
8
,
∣
∣
2
3
1
4
8
,
∣
∣
2
4
1
4
9
,
∣
∣
2
5
1
5
0
,
∣
∣
1
3
5
a
n
d
1
4
8
a
r
e
r
e
p
e
a
t
s
.
1
3
5
+
1
4
8
=
2
8
3
.
S
o
∑
⌊
2
7
x
⌋
=
3
6
0
7
−
2
8
3
=
3
3
2
4
.
O
R
W
e
m
a
y
n
o
t
u
s
e
f
u
n
c
t
i
o
n
s
u
m
f
(
0
,
2
5
,
i
n
t
(
(
4
+
(
2
1
+
x
)
/
2
9
)
∗
2
7
)
)
,
a
n
d
a
d
d
a
l
l
f
r
o
m
t
h
e
l
i
s
t
n
e
g
l
e
c
t
i
n
g
o
n
e
i
f
i
t
i
s
d
u
p
l
i
c
a
t
e
d
.
T
o
t
a
l
=
1
2
7
t
o
1
5
0
=
2
1
∗
(
1
5
0
−
1
2
7
+
1
)
(
1
5
0
+
1
2
7
)
=
3
3
2
4
.
~~~~~
There are two repeats. Is it because 29-27=2 ? No. it is only coincident.
T h e a b o v e w o u l d n o t c o m p i l e w i t h o u t t h i s ! ! !
I was not able to understand why "And we just need to get the sum of all the natural numbers in this range". Though it is true.
at this moment, let's forget the floor function 2 9 ⋅ 5 x + 5 0 = 2 9 ⋅ 2 5 = 7 2 5 ⇒ 1 4 5 x = 6 7 5 ⇒ x = 1 4 5 6 7 5 = 2 9 1 3 5 , but in this case, substituing in the equation above, we get 2 3 = 2 5 (Remember 2 9 ⋅ 5 = 1 4 5 ) so this solution for x is impossible, so the first step is x ≥ 2 9 1 3 7 (Remember 2 9 ⋅ 5 = 1 4 5 ). Now 2 9 ⋅ 6 = 1 7 4 ⇒ x < 2 9 1 6 2 . The rest is the same as Manuel Kahayon...
Problem Loading...
Note Loading...
Set Loading...
We can see that as long as 4 + 2 9 2 1 ≤ x < 5 + 2 9 1 7 , this equality is satisfied.
Now, we can see that 2 7 ( 4 + 2 9 2 1 ) ≤ 2 7 x < 2 7 ( 5 + 2 9 1 7 ) , and taking the floor function of this inequality gives us
⌊ 1 2 7 . 5 5 ⌋ ≤ ⌊ 2 7 x ⌋ ≤ ⌊ 1 5 0 . 8 2 ⌋
Giving us 1 2 7 ≤ ⌊ 2 7 x ⌋ ≤ 1 5 0
And we just need to get the sum of all the natural numbers in this range, i.e.
2 ( 1 5 0 − 1 2 7 + 1 ) ( 1 5 0 + 1 2 7 ) = 3 3 2 4