From A A to E E

Geometry Level pending

In the unit circle, the inscribed regular 9 9 -sided polygon A B C D E F G H I ABCDEFGHI has lengths A B = a |\overline{AB}| = a , A C = b |\overline{AC}| = b , A D = c |\overline{AD}| = c and A E = d |\overline{AE}| = d . If ( b 2 a 2 ) ( c 2 a 2 ) = α (b^2 - a^2)(c^2 - a^2) = \alpha and ( d 2 a 2 ) ( d 2 c 2 ) = β (d^2 - a^2)(d^2 - c^2) = \beta , which of the following about the values of α \alpha and β \beta must be true?

α = β \alpha = \beta α < β \alpha < \beta β < α \beta < \alpha

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We can consider the vertices of the nonagon as the images of the 9th roots of unity on the Argand plane, as in the figure.
Let A A , B B , C C , D D , and E E be the images of ζ k = cos 2 k π 9 + i sin 2 k π 9 {{\zeta }_{k}}=\cos \frac{2k\pi }{9}+i\sin \frac{2k\pi }{9} , for k = 0 , 1 , 2 , 3 , 4 k=0,1,2,3,4 respectively. Then,

a 2 = A B 2 = ζ 1 ζ 0 2 = ( ζ 1 ζ 0 ) ( ζ 1 ζ 0 ) = ( ζ 1 1 ) ( ζ 1 1 ) = ζ 1 ζ 1 ( ζ 1 + ζ 1 ) + 1 = ζ 1 2 ( ζ 1 + ζ 1 ) + 1 = 2 ( ζ 1 + ζ 1 ) = 2 2 cos 2 π 9 \begin{aligned} {{a}^{2}} & ={{\left| \overline{AB} \right|}^{2}} \\ & ={{\left| {{\zeta }_{1}}-{{\zeta }_{0}} \right|}^{2}} \\ & =\left( {{\zeta }_{1}}-{{\zeta }_{0}} \right)\left( \overline{{{\zeta }_{1}}-{{\zeta }_{0}}} \right) \\ & =\left( {{\zeta }_{1}}-1 \right)\left( \overline{{{\zeta }_{1}}}-1 \right) \\ & ={{\zeta }_{1}}\overline{{{\zeta }_{1}}}-\left( {{\zeta }_{1}}+\overline{{{\zeta }_{1}}} \right)+1 \\ & ={{\left| {{\zeta }_{1}} \right|}^{2}}-\left( {{\zeta }_{1}}+\overline{{{\zeta }_{1}}} \right)+1 \\ & =2-\left( {{\zeta }_{1}}+\overline{{{\zeta }_{1}}} \right) \\ & =2-2\cos \frac{2\pi }{9} \\ \end{aligned} Similarly, b 2 = A C 2 = 2 2 cos 4 π 9 c 2 = A D 2 = 2 2 cos 6 π 9 d 2 = A E 2 = 2 2 cos 8 π 9 {{b}^{2}}={{\left| \overline{AC} \right|}^{2}}=2-2\cos \frac{4\pi }{9} \ \ \ \ \ {{c}^{2}}={{\left| \overline{AD} \right|}^{2}}=2-2\cos \frac{6\pi }{9} \ \ \ \ \ {{d}^{2}}={{\left| \overline{AE} \right|}^{2}}=2-2\cos \frac{8\pi }{9} Using these expressions we have b 2 a 2 = ( 2 2 cos 4 π 9 ) ( 2 2 cos 2 π 9 ) = 2 ( cos 2 π 9 cos 4 π 9 ) = 2 × 2 sin 2 π 9 + 4 π 9 2 sin 4 π 9 2 π 9 2 = 4 sin 3 π 9 sin π 9 ( 1 ) \begin{aligned} {{b}^{2}}-{{a}^{2}} & =\left( 2-2\cos \frac{4\pi }{9} \right)-\left( 2-2\cos \frac{2\pi }{9} \right) \\ & =2\left( \cos \frac{2\pi }{9}-\cos \frac{4\pi }{9} \right) \\ & =2\times 2\sin \frac{\frac{2\pi }{9}+\frac{4\pi }{9}}{2}\sin \frac{\frac{4\pi }{9}-\frac{2\pi }{9}}{2} \\ & =4\sin \frac{3\pi }{9}\sin \frac{\pi }{9} \ \ \ \ \ (1)\\ \end{aligned} Similarly, c 2 a 2 = 4 sin 4 π 9 sin 2 π 9 ( 2 ) {{c}^{2}}-{{a}^{2}}=4\sin \frac{4\pi }{9}\sin \frac{2\pi }{9} \ \ \ \ \ (2) Combining ( 1 ) (1) and ( 2 ) (2) , we find α = ( b 2 a 2 ) ( c 2 a 2 ) = 16 sin π 9 sin 2 π 9 sin 3 π 9 sin 4 π 9 ( 3 ) \alpha =\left( {{b}^{2}}-{{a}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=16\sin \frac{\pi }{9}\sin \frac{2\pi }{9}\sin \frac{3\pi }{9}\sin \frac{4\pi }{9} \ \ \ \ \ (3) Similarly, we get β = ( d 2 a 2 ) ( d 2 a 2 ) = 16 sin 7 π 9 sin ( π 9 ) sin 5 π 9 sin ( 2 π 3 ) ( 4 ) \beta =\left( {{d}^{2}}-{{a}^{2}} \right)\left( {{d}^{2}}-{{a}^{2}} \right)=16\sin \frac{7\pi }{9}\sin \left( -\frac{\pi }{9} \right)\sin \frac{5\pi }{9}\sin \left( -\frac{2\pi }{3} \right) \ \ \ \ \ (4) But, sin 7 π 9 = sin 2 π 9 , sin ( π 9 ) = sin π 9 , sin 5 π 9 = sin 4 π 9 , sin ( 2 π 3 ) = sin 3 π 9 \sin \frac{7\pi }{9}=\sin \frac{2\pi }{9}, \ \ \ \ \ \ \ \sin \left( -\frac{\pi }{9} \right)=-\sin \frac{\pi }{9}, \ \ \ \ \ \ \ \sin \frac{5\pi }{9}=\sin \frac{4\pi }{9}, \ \ \ \ \ \ \ \ \sin \left( -\frac{2\pi }{3} \right)=-\sin \frac{3\pi }{9} Hence, ( 3 ) (3) and ( 4 ) (4) give α = β \boxed{\alpha=\beta} .

You can compute a 2 , b 2 , c 2 , d 2 a^2, b^2,c^2,d^2 using cosine rule too. With O A = O B = = O H = 1 OA=OB=\cdots =OH = 1 , then A O B = 2 π 9 , A O C = 2 2 π 9 , A O D = 3 2 π 9 , \measuredangle AOB = \frac{2\pi}{9} , \quad \measuredangle AOC = 2\cdot \frac{2\pi}{9} , \quad \measuredangle AOD = 3\cdot \frac{2\pi}{9} , \quad \ldots So a 2 = 1 2 + 1 2 2 1 1 cos ( A O B ) , a^2 = 1^2 + 1^2 - 2 \cdot 1\cdot 1 \cdot \cos(\measuredangle AOB ) , \ldots

Pi Han Goh - 4 months, 1 week ago

Log in to reply

True and quick. I just wanted to highlight the connection regular polygons have with complex numbers.

Thanos Petropoulos - 4 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...