From a 1 a_1 to a 200 a_{200} , then back again

Algebra Level 4

a 1 a 2 + a 2 a 3 + a 3 a 4 + + a 199 a 200 + a 200 a 1 = 200 \large \color{#D61F06}{\frac {a_{1}}{a_{2}}} + \color{#EC7300}{\frac {a_{2}}{a_{3}}} + \color{#CEBB00}{\frac {a_{3}}{a_{4}}} + \cdots + \color{#20A900}{\frac {a_{199}}{a_{200}}} + \color{#3D99F6}{\frac {a_{200}}{a_{1}}} = \color{#69047E}{200}

Let a 1 , a 2 , a 3 , , a 200 a_{1}, a_{2}, a_{3}, \ldots, a_{200} be positive real numbers and a 1 < a 2 < a 3 < < a 200 a_{1}<a_{2}<a_{3}<\cdots <a_{200} . How many 200-tuplets ( a 1 , a 2 , a 3 , , a 200 ) (a_{1}, a_{2}, a_{3}, \ldots , a_{200}) satisfy the equation above?

3 0 1 2 4 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a 1 a 2 + a 2 a 3 + a 3 a 4 + . . . + a 199 a 200 + a 200 a 1 = 200 Given Since, a 1 , a 2 , a 3 a 200 are positive reals, Applying AM-GM we get, \normalsize\begin{aligned}&\dfrac {a_{1}}{a_{2}} + \dfrac {a_{2}}{a_{3}} + \dfrac {a_{3}}{a_{4}} + ... + \dfrac {a_{199}}{a_{200}} + \dfrac {a_{200}}{a_{1}} = 200\hspace{5mm}\small \color{#3D99F6}\text{Given}\\\\ &\text{Since, }{a_{1}},a_{2},a_{3}\cdots a_{200}\text{ are positive reals,}\\\\ &\text{Applying AM-GM we get, }\\\\\end{aligned}

a 1 a 2 + a 2 a 3 + a 3 a 4 + . . . + a 199 a 200 + a 200 a 1 200 a 1 a 2 a 2 a 3 a 3 a 4 a 199 a 200 a 200 a 1 200 a 1 a 2 + a 2 a 3 + a 3 a 4 + . . . + a 199 a 200 + a 200 a 1 200 1 As a 1 a 2 a 2 a 3 a 3 a 4 a 199 a 200 a 200 a 1 = 1 a 1 a 2 + a 2 a 3 + a 3 a 4 + . . . + a 199 a 200 + a 200 a 1 200 \normalsize\begin{aligned}\dfrac{\dfrac{a_{1}}{a_{2}} + \dfrac {a_{2}}{a_{3}} + \dfrac {a_{3}}{a_{4}} + ... + \dfrac {a_{199}}{a_{200}}+ \dfrac {a_{200}}{a_{1}}}{200}&\geq\sqrt[200]{\dfrac {a_{1}}{a_{2}}\cdot\dfrac {a_{2}}{a_{3}}\cdot\dfrac {a_{3}}{a_{4}}\cdots\dfrac {a_{199}}{a_{200}}\cdot\dfrac {a_{200}}{a_{1}}}\\\\ \dfrac{\dfrac{a_{1}}{a_{2}} + \dfrac {a_{2}}{a_{3}} + \dfrac {a_{3}}{a_{4}} + ... + \dfrac {a_{199}}{a_{200}}+ \dfrac {a_{200}}{a_{1}}}{200}&\geq1\hspace{15mm}\small\color{#3D99F6}\text{As }\dfrac {a_{1}}{a_{2}}\cdot\dfrac {a_{2}}{a_{3}}\cdot\dfrac {a_{3}}{a_{4}}\cdots\dfrac {a_{199}}{a_{200}}\cdot\dfrac {a_{200}}{a_{1}}=1\\\\ \implies\dfrac{a_{1}}{a_{2}} + \dfrac {a_{2}}{a_{3}} + \dfrac {a_{3}}{a_{4}} + ... + \dfrac {a_{199}}{a_{200}}+ \dfrac {a_{200}}{a_{1}}&\geq200\\\\\end{aligned}

The equality only occurs at, a 1 a 2 = a 2 a 3 = a 3 a 4 = . . . = a 199 a 200 = a 200 a 1 But since a 1 < a 2 < a 3 < < a 200 we have, a 1 a 2 , a 2 a 3 , a 3 a 4 , . . . , a 199 a 200 < 1 and a 200 a 1 > 1 a 1 a 2 + a 2 a 3 + a 3 a 4 + . . . + a 199 a 200 + a 200 a 1 > 200 Making the number of solutions 0 \normalsize\begin{aligned}&\text{The equality only occurs at,} \dfrac{a_{1}}{a_{2}} =\dfrac {a_{2}}{a_{3}} =\dfrac {a_{3}}{a_{4}} = ... = \dfrac {a_{199}}{a_{200}}= \dfrac {a_{200}}{a_{1}}\\\\ &\text{But since }{a_{1}}<a_{2}<a_{3}<\cdots <a_{200}\text{ we have,}\\\\ &\dfrac{a_{1}}{a_{2}} , \dfrac {a_{2}}{a_{3}} , \dfrac {a_{3}}{a_{4}} , ... , \dfrac {a_{199}}{a_{200}}<1 \text{ and } \dfrac {a_{200}}{a_{1}}>1\\\\ \implies&\dfrac{a_{1}}{a_{2}} + \dfrac {a_{2}}{a_{3}} + \dfrac {a_{3}}{a_{4}} + ... + \dfrac {a_{199}}{a_{200}}+ \dfrac {a_{200}}{a_{1}}>200\\\\ &\text{Making the number of solutions } \color{#EC7300}\boxed{\color{#333333}0}\end{aligned}

Brian Moehring
Apr 4, 2017

Suppose ( a 1 , a 2 , a 3 , , a 200 ) (a_1, a_2, a_3, \ldots, a_{200}) is such a solution.

Since 0 < a 1 < a 2 < a 200 0 < a_1 < a_2 < a_{200} , we have a 1 a 2 < 1 < a 200 a 1 \frac{a_1}{a_2} < 1 < \frac{a_{200}}{a_1} , so in particular a 1 a 2 a 200 a 1 \frac{a_1}{a_2} \neq \frac{a_{200}}{a_1} .

Therefore, by the [strict] AM-GM inequality, 1 = 1 200 = a 1 a 2 × a 2 a 3 × × a 199 a 200 × a 200 a 1 200 < 1 200 ( a 1 a 2 + a 2 a 3 + + a 199 a 200 + a 200 a 1 ) = 1 200 ( 200 ) = 1. 1 = \sqrt[200]{1} = \sqrt[200]{\frac{a_1}{a_2}\times\frac{a_2}{a_3}\times\cdots\times \frac{a_{199}}{a_{200}}\times \frac{a_{200}}{a_1}} < \frac{1}{200}\left(\frac{a_1}{a_2}+\frac{a_2}{a_3}+\cdots + \frac{a_{199}}{a_{200}} + \frac{a_{200}}{a_1}\right) = \frac{1}{200}(200) = 1.

That is, 1 < 1 1 < 1 , which of course is absurd, so there are no such solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...