From Back to Power 4

Algebra Level 4

10 0 4 9 9 4 + 9 8 4 9 7 4 + + 2 4 1 4 = ? \large 100^4-99^4+98^4-97^4+ \cdots +2^4-1^4 = \, ?


The answer is 50999950.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anish Harsha
Jan 31, 2016

10 0 4 9 9 4 + 2 4 1 4 100^4-99^4\ldots+2^4-1^4 can be written as

k = 1 n ( ( 2 k ) 4 ( 2 k 1 ) 4 ) \displaystyle \sum_{k=1}^n ((2k)^4-(2k-1)^4)

= k = 1 n ( 32 k 3 24 k 2 + 8 k 1 ) \displaystyle \sum_{k=1}^n (32k^3-24k^2+8k-1)

= 32 n 2 ( n + 1 ) 2 4 24 ( n ( n + 1 ) ( 2 n + 1 ) 6 + 8 n ( n + 1 ) 2 n 32 \dfrac{n^2(n+1)^2}{4}-24\dfrac{(n(n+1)(2n+1)}{6}+8 \dfrac{n(n+1)}{2}-n

= 8 n 4 + 8 n 3 n 8n^4+8n^3-n

With n = 50 n=50 , 8 ( 50 ) 4 + 8 ( 50 ) 3 50 8(50)^4+8(50)^3-50

= 50999950 50999950

Cool !! Did same !!

Akshat Sharda - 5 years, 4 months ago

Exactly Same Way.

Kushagra Sahni - 5 years, 4 months ago

10 0 4 9 9 4 + 2 4 1 4 100^4-99^4\ldots+2^4-1^4 = n = 1 100 n 4 + 2 n = 1 50 2 n 4 =-\sum_{n=1}^{100}n^4+2\sum_{n=1}^{50}2n^4 = 32 n = 1 50 n 4 n = 1 100 n 4 =32\sum_{n=1}^{50}n^4-\sum_{n=1}^{100}n^4 = 32 ( 5 0 5 5 + 5 0 4 2 + 5 0 3 3 + 50 30 ) ( 10 0 5 5 + 10 0 4 2 + 10 0 3 3 + 100 30 ) =32\left(\frac{50^5}{5}+\frac{50^4}{2}+\frac{50^3}{3}+\frac{50}{30}\right)-\left(\frac{100^5}{5}+\frac{100^4}{2}+\frac{100^3}{3}+\frac{100}{30}\right) = 50999950 =\huge50999950

S = 1 4 + 2 4 3 4 + 4 4 9 7 4 + 9 8 4 9 9 4 + 10 0 4 = k = 1 n ( ( 2 k 1 ) 4 + ( 2 k ) 4 ) where n = 50 = k = 1 n ( 32 k 3 24 k 2 + 8 k 1 ) = 32 × n 2 ( n + 1 ) 2 4 24 × n ( n + 1 ) ( 2 n + 1 ) 6 + 8 × n ( n + 1 ) 2 n = 4 n ( n + 1 ) ( 2 n ( n + 1 ) ( 2 n + 1 ) + 1 ) n = 8 n 4 + 8 n 3 n putting back n = 50 = 50999950 \begin{aligned} S & = {\color{#3D99F6}-1^4 + 2^4} {\color{#D61F06} - 3^4 + 4^4} - \cdots {\color{#3D99F6}-97^4 + 98^4} \color{#D61F06}-99^4 + 100^4 \\ & = \sum_{k=1}^n \left(-(2k-1)^4+(2k)^4\right) & \small \color{#3D99F6} \text{where }n = 50 \\ & = \sum_{k=1}^n \left(32k^3-24k^2+8k-1 \right) \\ & = 32\times \frac {n^2(n+1)^2}4 - 24 \times \frac {n(n+1)(2n+1)}6 + 8 \times \frac {n(n+1)}2 - n \\ & = 4n(n+1)(2n(n+1)-(2n+1) + 1) -n \\ & = 8n^4+8n^3 - n & \small \color{#3D99F6} \text{putting back }n = 50 \\ & = \boxed{50999950} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...