Find the total length of the curve defined on [ 0 , 2 π ] by
y ( x ) = ∫ 0 x ( t ln ( sin t ) ln ( cos t ) ) ( t ln ( sin t ) ln ( cos t ) + 2 ) d t
If the answer looks like 2 π + A π 2 ln 2 4 − B π 4 , where A and B are integers, then find A B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
dx 2 dy 2 + 1 = x lo g ( sin ( x ) ) lo g ( cos ( x ) ) ( x lo g ( sin ( x ) ) lo g ( cos ( x ) ) + 2 ) + 1 = x lo g ( sin ( x ) ) lo g ( cos ( x ) ) + 1
[ ∫ 0 2 π x lo g ( sin ( x ) ) lo g ( cos ( x ) ) d x + 2 π = 2 π + i ]
[ i = ∫ 0 2 π ( 2 π − x ) lo g ( sin ( x ) ) lo g ( cos ( x ) ) d x ]
[ i = 4 1 π ∫ 0 2 π lo g ( sin ( x ) ) lo g ( cos ( x ) ) d x ]
[ ∫ 0 2 π lo g ( sin ( x ) ) lo g ( cos ( x ) ) d x = − 4 8 1 π ( π 2 − 6 lo g 2 ( 4 ) ) ]
We can find the above integral by differentiating the Beta function twice under the integral. I wonder if we can also find the above integral with contour integration. By a change of variables and the symmetry of sin and cos, it suffices to find
[ ∫ 0 1 lo g ( sin ( π x ) ) lo g ( cos ( π x ) ) d x ]
Let
f ( z ) = lo g ( 1 − e 2 i π z ) lo g ( 1 + e 2 i π z ) = lo g ( − 2 i e i π z sin ( z ) ) lo g ( 2 e i π z cos ( z ) ) = ( i π z + lo g ( sin ( z ) ) − 2 i π + lo g ( 2 ) ) ( i π z + lo g ( cos ( z ) ) + lo g ( 2 ) ) = − π 2 z 2 + 2 π 2 z + 2 i π z lo g ( 2 ) + i π z lo g ( sin ( z ) ) + lo g ( 2 ) lo g ( sin ( z ) ) + i π z lo g ( cos ( z ) ) + lo g ( 2 ) lo g ( cos ( z ) ) − 2 1 i π lo g ( cos ( z ) ) + lo g ( sin ( z ) ) lo g ( cos ( z ) ) + lo g 2 ( 2 ) − 2 1 i π lo g ( 2 )
(Edit: Argument of Sin and Cos should be Pi*z not z)
(I am brushing over some details about choosing which branch of the log.)
It is well known how to compute
[ ∫ 0 1 lo g ( sin ( π x ) ) d x ]
[ ∫ 0 1 lo g ( cos ( π x ) ) d x ]
with contour integration. I think we can also compute
[ ∫ 0 1 x lo g ( sin ( π x ) ) d x ]
[ ∫ 0 1 x lo g ( cos ( π x ) ) d x ]
in the same way (not totally sure about this though).
Hence, to find the desired integral, it suffices to find
∫ 0 1 f ( x ) d x
which can probably done with contour integration by considering the rectangle with corners (0,0), (1,0), (0,R), (1,R) and let R-> Infinity. Note due to singularities at 0 and 1 and 1/2, you may have to consider circular sectors of radius epsilon that go around (0,0) and (1,0) and (1/2,0), and then let epsilon -> 0.
Does anybody have a nice way of finding this integral??
Anyway, the final answer is:
2 π − 1 9 2 π 4 + 3 2 1 π 2 lo g 2 ( 4 )