From Cosine to Sine

Calculus Level 2

Evaluate:

d d x cos x sin x 1 1 x 2 d x \frac { d }{ dx } \int _{ \cos { x } }^{ \sin { x } }{ \frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } dx }


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sharad Gaikwad
Apr 2, 2014

Using differential under integral sign we get the Ans=0+cos(x) (1/(cos(x))- (-sin(x)) (1/sin(x))=1+1=2

L N
Aug 24, 2014

The integral of 1 1 x 2 \frac{1}{\sqrt{1-x^2}} is arcsin x \arcsin{x} . Recall that cos x = sin ( π / 2 x ) \cos{x} = \sin(\pi/2 - x) , so if we we evaluate the integral from cos x sin x \cos{x} \to \sin{x} We get: arcsin sin x arcsin sin ( p i / 2 + x ) = x ( p i / 2 x ) = 2 x p i / 2 \arcsin{\sin{x}} - \arcsin{\sin(pi/2+x)} = x - (pi/2 - x) = 2x - pi/2 Taking the derivative we get the answer is 2.

Hitalo Rodrigues
Jun 18, 2014

I = 1 1 x 2 \int \frac{1}{1 - x^2} = arcsin x

So the result is

d d x \frac{d}{dx} [arcsin(sinx) - arcsin(cosx)]

Deriving using the Chain Rule the result is:

c o s x 1 ( c o s x ) 2 s i n x 1 ( s i n x ) 2 \frac{cosx}{1- (cosx)^2} - \frac{-sinx}{1- (sinx)^2} = 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...