∫ 0 ∞ e − 2 0 1 7 x ( coth x + cot x ) sin ( 2 0 1 7 x ) d x = a π tanh ( c b π )
The above equation is true for positive integers a , b and c , with g cd ( b , c ) = 1 .
Evaluate a + b + c
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
(+1) Nice! In a similar way, we can show that ∫ 0 ∞ e − n x ( coth x + cot x ) sin ( n x ) d x = 2 π ( 1 − e − n π 1 + e − n π ) ( − 1 ) n
( link try to do this problem please
Problem Loading...
Note Loading...
Set Loading...
If a , b are positive integers, then ∫ 0 ∞ e − a x c o t h x sin b x d x = ∫ 0 ∞ e − a x ( 1 − e − 2 x 1 + e − 2 x ) sin b x d x = ∫ 0 ∞ e − a x { 1 + 2 n ≥ 1 ∑ e − 2 n x } sin b x d x = a 2 + b 2 b + 2 n ≥ 1 ∑ ( a + 2 n ) 2 + b 2 b = n ≥ 0 ∑ ( a + 2 n ) 2 + b 2 b + n ≥ 1 ∑ ( a + 2 n ) 2 + b 2 b If we define S a , b = ∫ 0 ∞ e − a x sin x sin 2 b x d x then we have S a , 1 = 2 ∫ 0 ∞ e − a x cos x d x = a 2 + 1 2 a while S a , m + 1 − S a , m = ∫ 0 ∞ e − a x sin x sin 2 ( m + 1 ) x − sin 2 m x d x = 2 ∫ 0 ∞ e − a x cos ( 2 m + 1 ) x d x = a 2 + ( 2 m + 1 ) 2 2 a and hence S a , b = 2 a k = 0 ∑ b − 1 a 2 + ( 2 k + 1 ) 2 1 Thus ∫ 0 ∞ e − a x cot x sin ( 2 b + 1 ) x d x = 2 1 ∫ 0 ∞ e − a x sin x sin 2 ( b + 1 ) x + sin 2 b x d x = 2 1 [ S a , b + 1 + S a , b ] = a k = 0 ∑ b a 2 + ( 2 k + 1 ) 2 1 + a k = 0 ∑ b − 1 a 2 + ( 2 k + 1 ) 2 1 Putting this together, we have ∫ 0 ∞ e − ( 2 b + 1 ) x ( c o t h x + cot x ) sin ( 2 b + 1 ) x d x = n ≥ 0 ∑ ( 2 b + 1 + 2 n ) 2 + ( 2 b + 1 ) 2 2 b + 1 + n ≥ 1 ∑ ( 2 b + 1 + 2 n ) 2 + ( 2 b + 1 ) 2 2 b + 1 + ( 2 b + 1 ) k = 0 ∑ b ( 2 b + 1 ) 2 + ( 2 k + 1 ) 2 1 + ( 2 b + 1 ) k = 0 ∑ b − 1 ( 2 b + 1 ) 2 + ( 2 k + 1 ) 2 1 = 2 ( 2 b + 1 ) k = 0 ∑ ∞ ( 2 b + 1 ) 2 + ( 2 k + 1 ) 2 1 = 2 ( 2 b + 1 ) × 4 ( 2 b + 1 ) π tanh ( 2 ( 2 b + 1 ) π ) = 2 1 π tanh ( 2 ( 2 b + 1 ) π ) In particular, we have ∫ 0 ∞ e − 2 0 1 7 x ( c o t h x + cot x ) sin ( 2 0 1 7 x ) d x = 2 1 π tanh ( 2 2 0 1 7 π ) making the answer 2 + 2 0 1 7 + 2 = 2 0 2 1 .