From Coth to Cot

Calculus Level 5

0 e 2017 x ( coth x + cot x ) sin ( 2017 x ) d x = π a tanh ( b π c ) \int_{0}^{\infty} e^{-2017 x} (\coth x + \cot x ) \sin(2017 x) \ \mathrm{d}x = \dfrac{\pi}{a} \tanh\left( \dfrac{b \pi}{c} \right)

The above equation is true for positive integers a a , b b and c c , with gcd ( b , c ) = 1 \gcd(b,c) = 1 .

Evaluate a + b + c a+b+c


The answer is 2021.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 19, 2017

If a , b a,b are positive integers, then 0 e a x c o t h x sin b x d x = 0 e a x ( 1 + e 2 x 1 e 2 x ) sin b x d x = 0 e a x { 1 + 2 n 1 e 2 n x } sin b x d x = b a 2 + b 2 + 2 n 1 b ( a + 2 n ) 2 + b 2 = n 0 b ( a + 2 n ) 2 + b 2 + n 1 b ( a + 2 n ) 2 + b 2 \begin{aligned} \int_0^\infty e^{-ax} \mathrm{coth}\,x\,\sin bx\,dx & = \int_0^\infty e^{-ax} \left(\frac{1 + e^{-2x}}{1 - e^{-2x}}\right)\,\sin bx\,dx \\ & = \int_0^\infty e^{-ax} \left\{ 1 + 2\sum_{n \ge 1} e^{-2nx}\right\} \sin bx\,dx \\ & = \frac{b}{a^2 + b^2} + 2\sum_{n \ge 1} \frac{b}{(a + 2n)^2 + b^2} \\ & = \sum_{n \ge 0} \frac{b}{(a+2n)^2 + b^2} + \sum_{n \ge 1} \frac{b}{(a + 2n)^2 + b^2} \end{aligned} If we define S a , b = 0 e a x sin 2 b x sin x d x S_{a,b} \; = \; \int_0^\infty e^{-ax} \frac{\sin 2bx}{\sin x}\,dx then we have S a , 1 = 2 0 e a x cos x d x = 2 a a 2 + 1 S_{a,1} \; = \; 2\int_0^\infty e^{-ax} \cos x\,dx \; = \; \frac{2a}{a^2 + 1} while S a , m + 1 S a , m = 0 e a x sin 2 ( m + 1 ) x sin 2 m x sin x d x = 2 0 e a x cos ( 2 m + 1 ) x d x = 2 a a 2 + ( 2 m + 1 ) 2 \begin{aligned} S_{a,m+1} - S_{a,m} & = \int_0^\infty e^{-ax} \frac{\sin 2(m+1)x - \sin 2mx}{\sin x}\,dx \; = \; 2\int_0^\infty e^{-ax} \cos(2m+1)x\,dx \\ & = \frac{2a}{a^2 + (2m+1)^2} \end{aligned} and hence S a , b = 2 a k = 0 b 1 1 a 2 + ( 2 k + 1 ) 2 S_{a,b} \; = \; 2a\sum_{k=0}^{b-1} \frac{1}{a^2 + (2k+1)^2} Thus 0 e a x cot x sin ( 2 b + 1 ) x d x = 1 2 0 e a x sin 2 ( b + 1 ) x + sin 2 b x sin x d x = 1 2 [ S a , b + 1 + S a , b ] = a k = 0 b 1 a 2 + ( 2 k + 1 ) 2 + a k = 0 b 1 1 a 2 + ( 2 k + 1 ) 2 \begin{aligned} \int_0^\infty e^{-ax} \cot x \sin(2b+1)x\,dx & = \tfrac12\int_0^\infty e^{-ax} \frac{\sin2(b+1)x + \sin 2bx}{\sin x}\,dx \\ & = \tfrac12\big[S_{a,b+1} + S_{a,b}\big] \\ & = a\sum_{k=0}^b \frac{1}{a^2 + (2k+1)^2} + a \sum_{k=0}^{b-1} \frac{1}{a^2 + (2k+1)^2} \end{aligned} Putting this together, we have 0 e ( 2 b + 1 ) x ( c o t h x + cot x ) sin ( 2 b + 1 ) x d x = n 0 2 b + 1 ( 2 b + 1 + 2 n ) 2 + ( 2 b + 1 ) 2 + n 1 2 b + 1 ( 2 b + 1 + 2 n ) 2 + ( 2 b + 1 ) 2 + ( 2 b + 1 ) k = 0 b 1 ( 2 b + 1 ) 2 + ( 2 k + 1 ) 2 + ( 2 b + 1 ) k = 0 b 1 1 ( 2 b + 1 ) 2 + ( 2 k + 1 ) 2 = 2 ( 2 b + 1 ) k = 0 1 ( 2 b + 1 ) 2 + ( 2 k + 1 ) 2 = 2 ( 2 b + 1 ) × π 4 ( 2 b + 1 ) tanh ( ( 2 b + 1 ) π 2 ) = 1 2 π tanh ( ( 2 b + 1 ) π 2 ) \begin{aligned} \int_0^\infty &e^{-(2b+1)x}\big(\mathrm{coth}\,x + \cot x\big) \sin(2b+1)x\,dx \\ & = \begin{array}{l} \displaystyle \sum_{n \ge 0} \frac{2b+1}{(2b+1+2n)^2 + (2b+1)^2} + \sum_{n \ge 1} \frac{2b+1}{(2b+1 + 2n)^2 + (2b+1)^2} \\ \displaystyle + (2b+1)\sum_{k=0}^b \frac{1}{(2b+1)^2 + (2k+1)^2} + (2b+1) \sum_{k=0}^{b-1} \frac{1}{(2b+1)^2 + (2k+1)^2} \end{array} \\ & = 2(2b+1)\sum_{k=0}^\infty \frac{1}{(2b+1)^2 + (2k+1)^2} \\ & = 2(2b+1) \times \frac{\pi}{4(2b+1)} \tanh\big(\tfrac{(2b+1)\pi}{2}\big) \; = \; \tfrac12\pi \tanh\big(\tfrac{(2b+1)\pi}{2}\big) \end{aligned} In particular, we have 0 e 2017 x ( c o t h x + cot x ) sin ( 2017 x ) d x = 1 2 π tanh ( 2017 π 2 ) \int_0^\infty e^{-2017x}\big(\mathrm{coth}\,x + \cot x\big) \sin(2017x)\,dx \; =\; \tfrac12\pi \tanh\big(\tfrac{2017 \pi}{2}\big) making the answer 2 + 2017 + 2 = 2021 2 + 2017 + 2 = \boxed{2021} .

(+1) Nice! In a similar way, we can show that 0 e n x ( coth x + cot x ) sin ( n x ) d x = π 2 ( 1 + e n π 1 e n π ) ( 1 ) n \int_{0}^{\infty} e^{-nx} (\coth x + \cot x ) \sin(n x) \ \mathrm{d}x = \dfrac{\pi}{2} \left( \dfrac{1+e^{-n \pi}}{1-e^{-n \pi}} \right)^{(-1)^n}

Ishan Singh - 4 years, 4 months ago

( link try to do this problem please

Sudhamsh Suraj - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...