From floor to ceiling

Find a positive integer n n such that 20 n 13 + 13 n 20 = 2013 \left\lfloor \frac {20n}{13} \right\rfloor + \left\lceil \frac {13n}{20} \right\rceil = 2013 .

This problem is proposed by Ahaan Rungta .


Details and assumptions:

  • The function x : R Z \lfloor x \rfloor: \mathbb{R} \rightarrow \mathbb{Z} refers to the greatest integer smaller than or equal to x x . For example 2.3 = 2 \lfloor 2.3 \rfloor = 2 and 5 = 5 \lfloor -5 \rfloor = -5 .

  • The function x : R Z \lceil x \rceil : \mathbb{R} \rightarrow \mathbb{Z} refers to the smallest integer that is greater than or equal to to x x . For example, 2.3 = 3 \lceil 2.3 \rceil = 3 and 5 = 5 \lceil -5 \rceil = -5 .


The answer is 920.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Sayak Chakrabarty
May 20, 2014

From the properties of floor and ceiling, x 1 x x , y y y + 1 x-1 \leq \lfloor x \rfloor \leq x, y \leq \lceil y \rceil \leq y+1 . So, we see that x + y 1 x + y x + y + 1 x+y - 1 \leq \lfloor x \rfloor \leq + \lceil y \rceil \leq x + y + 1 .

Thus 20 n 13 + 13 n 20 1 20 n / 13 + 13 n / 20 < 20 n 13 + 13 n 20 1 \frac{20n}{13} +\frac{13n}{20} -1 \leq \lfloor 20n/13 \rfloor + \lceil 13n/20 \rceil < \frac{20n}{13} +\frac{13n}{20} -1

i.e. 569 n 260 1 < 2013 569 n 260 + 1 \frac{569n}{260} -1 < 2013 \leq \leq {569n}{260} + 1 . Simplifying gives 919.3 < n < 920.28 919 .3 < n < 920. 28 . We then check that n = 920 n=920 works.

[Latex edits]

Most solutions were not able to explain why their answer must be close to the approximate value of 2013 × 260 529 \frac { 2013 \times 260 } {529} . It does not follow because we 'round off' the value of 919.8 919.8 .

Note: There is no integer solution to 20 n 13 + 13 n 20 = 2013 \lceil \frac {20n}{13} \rceil + \lfloor \frac {13n}{20} \rfloor = 2013 . This is why it is important to verify that the guess of n = 920 n=920 does indeed satisfy the conditions of the problem.

Calvin Lin Staff - 7 years ago
James Lewis
May 20, 2014

We find n for the equation 20n/13 + 13n/20 = 2013. In this equation, n is 919.8242..., so we test n = 920, 919 for the problem above and find that n = 920 is correct.

We can approximate a value for the expression, and then use trial and error to find our answer. 20 n 13 + 13 n 20 20 n 13 + 13 n 20 = 569 n 260 \lfloor \frac{20n}{13} \rfloor + \lceil \frac{13n}{20} \rceil \approx \frac{20n}{13}+\frac{13n}{20}=\frac{569n}{260} Since we want the expression approximately 2013, 569 n 260 = 2013 n 919.8 \frac{569n}{260}=2013 \Rightarrow n \approx 919.8 . A quick check shows that the answer is 920 \boxed{920}

We have x = x \left \lceil x \right \rceil = x or x = x + 1 \left \lceil x \right \rceil = \left \lfloor x \right \rfloor + 1 ( x x is a real number).

Beside we have a a a + 1 \left \lfloor a \right \rfloor \leq a \leq \left \lfloor a \right \rfloor +1 ( a a is a real number).

So, we have 2013 = 20 n 13 + 13 n 20 20 n 13 + 13 n 20 + 1 20 n 13 + ( 13 n 20 + 1 ) 2013 + 1 = 2014 2013 = \left \lfloor \frac{20n}{13} \right \rfloor + \left \lceil \frac{13n}{20} \right \rceil \leq \left \lfloor \frac{20n}{13} \right \rfloor + \left \lfloor \frac{13n}{20} \right \rfloor +1 \leq \frac{20n}{13} + (\frac{13n}{20} +1) \leq 2013 + 1 =2014

So 2012.260 569 n 2013.260 569 \frac{2012.260}{569} \leq n \leq \frac{2013.260}{569} and n is an integer number, so n = 920 n=920 .

Michael Fuller
Jun 6, 2015

From 20 n 13 + 13 n 20 = 2013 \left\lfloor \frac { 20n }{ 13 } \right\rfloor +\left\lceil \frac { 13n }{ 20 } \right\rceil =2013 , we can say

20 n 13 + s + 13 n 20 t = 2013 \frac { 20n }{ 13 } +s+\frac { 13n }{ 20 } -t=2013 , where

0 s < 1 0\le s< 1 ,

0 t < 1 0\le t< 1 ,

and therefore 1 < ( s t ) < 1 -1< (s-t)< 1 (we will remember this for later)


20 n 13 + 13 n 20 = 2013 + t s 569 260 n = 2013 ( s t ) \large \frac { 20n }{ 13 } +\frac { 13n }{ 20 } =2013+t-s\\ \large \frac { 569 }{ 260 } n=2013-\left( s-t \right)

n = 260 × 2013 569 260 569 ( s t ) n = 523380 569 260 569 ( s t ) n = 919 + 469 569 260 569 ( s t ) \large n=\frac { 260\times 2013 }{ 569 } -\frac { 260 }{ 569 } \left( s-t \right) \\ \large n=\frac { 523380 }{ 569 } -\frac { 260 }{ 569 } \left( s-t \right) \\ \large n=919+\frac { 469 }{ 569 } -\frac { 260 }{ 569 } \left( s-t \right)

After calculating the bounds of n for when ( s t ) = 1 (s-t)=1 and 1 -1 , we find that 919.37 < n < 920.28 \large 919.37< n<920.28 (to 2 decimal places).

n = 920 \large \therefore n=\color{#20A900}{\boxed { 920 }}

Sarthak Singla
Apr 16, 2016

Let us consider 4 nos. x,y,r,R.

By Euclid's division lemma,

20n = 13x + r , r<13

13n = 20y - R , R<20

Examining carefully we see that x+y=2013

Now , 20 n r 13 \frac{20n-r}{13} = x

13 n R 20 \frac{13n-R}{20} =y

Solving, we get,

569n-20r+13R=(2013)(260)

now for max value of n, r should be max i.e. 12 and R should be minimum i.e 1

max value of n comes out to be approx 920.

for min value of n, r should be min i.e. 1 and R should be max i.e 19

min value of n comes out to be approx 919

checking both 919 and 920 as n we get 920 as solution.

Raven Herd
Jun 9, 2015

[a] + [b]=[a+b]. This statement is true in most cases. [20n/13 + 13n/20]=2013 [569n/260]=2013 now , this implies that L.H.S is always greater than or equal to R.H.S. n>=2013*260/569 n>=919.8 a positive integer greater than 919.8 is 920.

Maulshree Singh
May 20, 2014

20n/13+13n/20=2013

400n+169n=2013 13 20

569n=523380

n=919.824

rounding off n we get n=920

Arpit Kalla
May 20, 2014

First factorize the given equation :

\frac {20n}{13} + \frac {13n}{20} = 2013 n( \frac {20}{13}+\frac {13}{20}) = 2013 n(\frac {400+169}{260}) =2013 n(\frac {569}{260} = 2013 569n = 2013 x 260 n = 523380/569 n=919.82

Now we ceil n Therefore n = 920

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...