From Limits to IMVT

Calculus Level 4

For any real λ \lambda denote by f ( λ ) f(\lambda) the real solution to the equation x ( 1 + ln x ) = λ x\left( 1 + \ln { x } \right) = \lambda . Find the value of

1 2 lim λ f ( λ ) λ ln λ \large\ {\displaystyle { \frac { 1 }{ 2 } \lim _{ \lambda \rightarrow \infty }{ \frac { f( \lambda) }{\frac { \lambda }{ \ln { \lambda } } } } } } .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 1, 2018

The function g : [ 1 , ) [ 1 , ) g\,:[1,\infty) \to [1,\infty) given by g ( x ) = x ( 1 + ln x ) g(x) = x(1+\ln x) is strictly monotonic increasing and bijective, and f = g 1 f = g^{-1} . Putting x = f ( λ ) x = f(\lambda) we see that f ( λ ) ln λ λ = x ln λ x ( 1 + ln x ) = ln x + ln ( 1 + ln x ) 1 + ln x = ln x 1 + ln x + ln ( 1 + ln x ) 1 + ln x \frac{f(\lambda)\ln\lambda}{\lambda} \; = \; \frac{x \ln\lambda}{x(1 + \ln x)} \; = \; \frac{\ln x + \ln(1 + \ln x)}{1 + \ln x} \; = \; \frac{\ln x}{1 + \ln x} + \frac{\ln(1 + \ln x)}{1 + \ln x} for λ 1 \lambda \ge 1 . As λ \lambda \to \infty we see that x , 1 + ln x x\,,\,1 + \ln x \, \to \infty as well, and hence lim λ f ( λ ) ln λ λ = 1 + 0 = 1 \lim_{\lambda \to \infty} \frac{f(\lambda)\ln\lambda}{\lambda} \; = \; 1 +0 \; = \; 1 making the answer 1 2 \boxed{\tfrac12} .

@Mark Hennings , sir thank you so much for solution. Always appreciate it.

Priyanshu Mishra - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...