From minus to plus

Algebra Level 1

If a > 0 a>0 and a 1 a = 5 6 , a - \frac{1}{a} = \frac{5}{6}, then

a + 1 a = ? a + \frac{1}{a} = \ ?

13 6 \frac{13}{6} 14 5 \frac{14}{5} 17 6 \frac{17}{6} 11 5 \frac{11}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Nihar Mahajan
Oct 2, 2015

( a + 1 a ) 2 = a 2 + 2 a ( 1 a ) + 1 a 2 = a 2 + 1 a 2 + 2 = a 2 + 1 a 2 2 + 4 = a 2 2 a ( 1 a ) + 1 a 2 + 4 = ( a 1 a ) 2 + 4 = ( 5 6 ) 2 + 4 = 25 36 + 4 ( a + 1 a ) 2 = 169 36 ( a + 1 a ) 2 = 169 36 a + 1 a = 13 6 a + 1 a = 13 6 since a > 0 \large{\begin{aligned}\left(a+\dfrac{1}{a}\right)^2 &= a^2+2a\left(\dfrac{1}{a}\right) + \dfrac{1}{a^2} \\ &= a^2+\dfrac{1}{a^2}+2 \\ &= a^2+\dfrac{1}{a^2} -2 + 4 \\ &= a^2 - 2a\left(\dfrac{1}{a}\right) + \dfrac{1}{a^2} + 4 \\ &= \left(a-\dfrac{1}{a}\right)^2 + 4 \\ &= \left(\dfrac{5}{6}\right)^2 + 4 \\ &= \dfrac{25}{36} + 4 \\\Rightarrow \left(a+\dfrac{1}{a}\right)^2 &= \dfrac{169}{36} \\ \Rightarrow \sqrt{\left(a+\dfrac{1}{a}\right)^2} &= \sqrt{\dfrac{169}{36}} \\\Rightarrow \left| a+\dfrac{1}{a} \right| &= \left| \dfrac{13}{6} \right| \\ \Rightarrow a+\dfrac{1}{a} &= \boxed{\dfrac{13}{6}} \dots \text{since a > 0} \end{aligned}}

Beautiful :)

Romeo Gomez - 5 years, 8 months ago

We have ( a + 1 a ) 2 = ( a 1 a ) 2 + 4 = ( 5 6 ) 2 + 4 = 169 36 ( a + \dfrac{1}{a} )^{2} = ( a - \dfrac{1}{a} )^2 + 4 = (\dfrac{5}{6})^2 + 4 = \dfrac{169}{36} . But as a > 0 ( a + 1 a ) > 0 a > 0 \Rightarrow ( a + \dfrac{1}{a} ) > 0 , we have ( a + 1 a ) = + 169 36 = 13 6 ( a + \dfrac{1}{a} ) = + \sqrt{\dfrac{169}{36}} = \boxed{\dfrac{13}{6}} .

Moderator note:

Great! Thanks for pointing out where a > 0 a > 0 is used.

Rohit Sachdeva
Oct 1, 2015

The options are poorly drafted.. Anyone who knows that sum of a number and its recirpocal is always >=2 will straight away mark 13/6 because that is the only option >=2

Yes @Rohit Sachdeva Agreed. Just a small typo, the sum of a number and its reciporocal is 2 \geq 2

Mehul Arora - 5 years, 8 months ago

Log in to reply

Yes agreed..made the correction! :)

Rohit Sachdeva - 5 years, 8 months ago

Yeah , agreed.

Nihar Mahajan - 5 years, 8 months ago

@Rohit Sachdeva Can you please prove it...(I didn't know about this)

Archiet Dev - 5 years, 7 months ago

Thanks for pointing that out. Let me edit the options.

Calvin Lin Staff - 5 years, 8 months ago
Dev Sharma
Oct 1, 2015

a 1 / a = 5 / 6 a - 1/a = 5/6

Squaring both sides and adding 4 both sides :

( a + 1 / a ) 2 = 169 / 36 (a + 1/a)^2 = 169/36

so a + 1/a = 13/6

Michelle Wanha
Oct 6, 2015

I hope that helps :)

Pretty much what I did

Manu Mehta - 5 years, 7 months ago

a-1/a=5/6; 6a^2-5a-6=0; a1=3/2, bacause a>0; a+1/a=3/2+2/3=13/6

Dan Guest
Oct 3, 2015

a - 1/a = 5/6 Therefore, a^2/a - 1/a = 5/6 (a^2 -1)/a = 5/6 6(a^2-1) = 5a (cross multiply) 6a^2 - 6 = 5a 6a^2 - 5a - 6 =0 (3a+2)(2a-3) = 0 a = -2/3 or a = 3/2 Since a > 0, a = 3/2 Substitute a into a +1/a 3/2 + 1/(3/2) = ? 3/2 + 2/3 = ? 9/6 + 4/6 = 13/6 =13/6

Allan Baguio
Nov 14, 2015

a-1/a= 5/6

6a^2 - 5a - 6=0

( 3a+2) (2a-3)= 0

But a>0

a = 3/2

So a+1/a= 3/2 +2/3

= 13/ 6

Pawan Dhillon
Nov 11, 2015

a-1/a=5/6 6a^2-6=5a 6a^2-5a-6=0 3a(2a-3)+2(2a-3)=0 a=-2/3,3/2 as a>0 hence 3/2+1/3/2=3/2+2/3 =13/6

Joze Wingedlion
Oct 15, 2015

a-\frac{1}{3}=\frac{5}{6} /*6a 6a^{2}-5a-6=0 (2a-3)(3a+2)=0 The only possible solution for a>0 is a=\frac{3}{2} \frac{3}{2}+1/\frac{3}{2}=\frac{13}{6}

Jaime Maldonado
Oct 8, 2015

a - 1/a = 5/6 es una cuadrática (6a^2 - 5a - 6 = 0), entonces tiene dos valores para "a" que la satisfasen (a = 3/2 y a = -2/3). Por lo tanto: a + 1/a = (+ ó -) 13/6. Esta es la respuesta. La condición a > 0 no se justifica, en tal caso la solución es +13/6

Akshay Manchanda
Oct 2, 2015

You dont have to that much of calculation a+1/a >2 as am>gm of two numbers so only last option satisfy given condition.

Oooh, thanks for pointing that out. Let me edit the options :)

Calvin Lin Staff - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...