From my exam

Calculus Level 5

A cubic graph y = f ( x ) y = f(x) intersects the line y = 1 2 x y=\frac{1}{2} x at three points.
Starting from the left, these 3 intersection points are A , B , A, B, and C . C.

If the slope of the tangent lines at A A and C C are 4 and 5, respectively, what is the slope of the tangent line at B ? B?

If it is of the from m n -\frac{m}{n} , where m m and n n are coprime positive integers, enter m + n m+n .


The answer is 79.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chaebum Sheen
Jan 2, 2017

Let f ( x ) 1 2 x = g ( x ) f(x)-\frac{1}{2} x=g(x) .

Note that if A = ( a , 1 2 a ) , B = ( b , 1 2 b ) , C = ( c , 1 2 c ) A=(a, \frac{1}{2}a), B=(b, \frac{1}{2}b), C=(c, \frac{1}{2}c) then g ( x ) g(x) is of the form p ( x a ) ( x b ) ( x c ) p(x-a)(x-b)(x-c) .

Now note that the ratio of the derivative of g ( x ) g(x) at point ( a , 0 ) (a, 0) and point ( c , 0 ) (c,0) can be expressed in the from ( b a ) : ( c b ) = 4 1 2 : 5 1 2 = 7 : 9 (b-a):(c-b) =4-\frac{1}{2}: 5-\frac{1}{2}=7: 9

Using this, let b = a + 7 k , c = a + 16 k b=a+7k, c=a+16k . Note that the derivative of g ( x ) g(x) at point ( a , 0 ) (a,0) is p × 7 k × 16 k = 7 2 p k 2 = 1 32 p \times 7k \times 16k =\frac{7}{2} \Leftrightarrow pk^2=\frac{1}{32}

Using the same method g ( x ) g(x) at point ( b , 0 ) (b,0) can be calculated to be 7 k × 9 k × p = 63 32 7k \times 9k \times p= -\frac{63}{32} , the derivative of f ( x ) f(x) at point ( b , 1 2 b ) (b, \frac{1}{2}b ) is 63 32 + 1 2 = 47 32 -\frac{63}{32}+\frac{1}{2}=-\frac{47}{32} .

The answer is 32 + 47 = 79 32 + 47 =79 .

Kartik Sharma
Jan 26, 2017

Let's propose a very powerful theorem :

If a polynomial of degree n has real roots x 1 , x 2 , x 3 , , x n such that x 1 < x 2 < x 3 < < x n . \displaystyle \color{#D61F06} \text{If a polynomial of degree} \ \color{#333333}n \ \color{#D61F06} \text{has real roots} \ \color{#333333} x_1, x_2, x_3,\cdots, x_n \ \color{#D61F06} \text{such that}\ \color{#333333} x_1 < x_2 < x_3 <\cdots <x_n.

If slopes of tangents at x i are m i , then , \displaystyle \color{#D61F06} \text{If slopes of tangents at} \ \color{#333333} x_i \ \color{#D61F06} \text{are}\color{#333333} \ m_i,\ \color{#D61F06} \text{then},

1 m 1 + 1 m 2 + 1 m 3 + + 1 m n = 0 \large \frac{1}{m_1} + \frac{1}{m_2} + \frac{1}{m_3} + \cdots + \frac{1}{m_n} = 0

PROOF

Let P ( x ) = a n x n + a n 1 x n 1 + a n 2 x n 2 + a n 3 x n 3 + + a 0 \displaystyle P(x) = a_n x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + a_{n-3}x^{n-3} + \cdots + a_0 have roots x 1 , x 2 , x 3 , , x n x_1, x_2, x_3,\cdots, x_n .

Then we can also write it as - P ( x ) = a n ( x x 1 ) ( x x 2 ) ( x x 3 ) ( x x 4 ) ( x x n ) \displaystyle P(x) = a_n (x-x_1) (x-x_2) (x-x_3) (x - x_4) \cdots (x - x_n)

Let a = a n a = a_n ,

P ( x ) = a ( x x 2 ) ( x x 3 ) ( x x n ) + a ( x x 1 ) ( x x 3 ) ( x x n ) + + a ( x x 1 ) ( x x 2 ) ( x x n 1 ) \displaystyle P'(x) = a (x - x_2)(x - x_3) \cdots (x - x_n) + a (x - x_1)(x - x_3) \cdots (x - x_n) + \cdots + a (x - x_1)(x - x_2) \cdots (x - x_{n-1})

P ( x 1 ) = m 1 = a ( x 1 x 2 ) ( x 1 x 3 ) ( x 1 x n ) \displaystyle P'(x_1) = m_1 = a (x_1 - x_2)(x_1 - x_3) \cdots (x_1 - x_n)

P ( x 2 ) = m 2 = a ( x 2 x 1 ) ( x 2 x 3 ) ( x 2 x n ) \displaystyle P'(x_2) = m_2 = a (x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_n)

\vdots

P ( x n ) = m n = a ( x n x 1 ) ( x n x 2 ) ( x n x n 1 ) \displaystyle P'(x_n) = m_n = a (x_n - x_1)(x_n - x_2) \cdots (x_n - x_{n-1})

Now, experience tells us that 1 m i \frac{1}{m_i} 's might be a good way to go.(One can check cases like n = 2 , 3 n=2, 3 to feel more comfortable).

1 m 1 = 1 a ( x 1 x 2 ) ( x 1 x 3 ) ( x 1 x n ) \displaystyle \frac{1}{m_1} = \frac{1}{a (x_1 - x_2)(x_1 - x_3) \cdots (x_1 - x_n)}

1 m 2 = 1 a ( x 2 x 1 ) ( x 2 x 3 ) ( x 2 x n ) \displaystyle \frac{1}{m_2} = \frac{1}{a (x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_n)}

\vdots

1 m n = 1 a ( x n x 1 ) ( x n x 2 ) ( x n x n 1 ) \displaystyle \frac{1}{m_n} = \frac{1}{a (x_n - x_1)(x_n - x_2) \cdots (x_n - x_{n-1})}

Let's take 1 m 1 \frac{1}{m_1} and try to expand it using partial fractions.

1 m 1 = A 2 a ( x 1 x 2 ) + A 3 a ( x 1 x 3 ) + + A n a ( x 1 x n ) \displaystyle \frac{1}{m_1} = \frac{A_2}{a (x_1 - x_2)} + \frac{A_3}{a (x_1 - x_3)} + \cdots + \frac{A_n}{a (x_1 - x_n)}

What is the value of A 2 , A 3 , A n A_2, A_3, \cdots A_n ?

We know that

1 = A 2 ( x 1 x 3 ) ( x 1 x 4 ) ( x 1 x n ) + A 3 ( x 1 x 2 ) ( x 1 x 4 ) ( x 1 x n ) + + A n ( x 1 x 3 ) ( x 1 x 4 ) ( x 1 x n 1 ) \displaystyle 1 = A_2 (x_1 - x_3) (x_1 - x_4) \cdots (x_1 - x_n) + A_3 (x_1 - x_2) (x_1 - x_4) \cdots (x_1 - x_n) + \cdots + A_n (x_1 - x_3) (x_1 - x_4) \cdots (x_1 - x_{n-1})

Thus, if we substitute x 1 = x 2 x_1 = x_2 , we get

A 2 = 1 ( x 2 x 3 ) ( x 2 x 4 ) ( x 2 x n ) A_2 = \frac{1}{(x_2 - x_3)(x_2 - x_4)\cdots (x_2 - x_n)} and so on.

Our expression for 1 m 1 \frac{1}{m_1} therefore becomes -

1 m 1 = 1 ( x 2 x 3 ) ( x 2 x 4 ) ( x 2 x n ) a ( x 1 x 2 ) + 1 ( x 3 x 2 ) ( x 3 x 4 ) ( x 3 x n ) a ( x 1 x 3 ) + + 1 ( x n x 2 ) ( x n x 3 ) ( x n x n 1 ) a ( x 1 x n ) \displaystyle \frac{1}{m_1} = \frac{\frac{1}{(x_2 - x_3)(x_2 - x_4)\ldots (x_2 - x_n)}}{a (x_1 - x_2)} + \frac{\frac{1}{(x_3 - x_2)(x_3 - x_4)\ldots (x_3 - x_n)}}{a (x_1 - x_3)} + \ldots + \frac{\frac{1}{(x_n - x_2)(x_n - x_3)\ldots (x_n - x_{n-1})}}{a (x_1 - x_n)}

Observe carefully and one will get

1 m 1 = 1 m 2 + 1 m 3 + 1 m 4 + + 1 m n \displaystyle \frac{1}{m_1} = \frac{-1}{m_2} + \frac{-1}{m_3} + \frac{-1}{m_4} + \cdots + \frac{-1}{m_n}

QED \large \text{QED}

So, this problem just becomes g ( x ) = f ( x ) x 2 g(x) = f(x) - \frac{x}{2} has roots equal to x 1 , x 2 , x 3 x_1, x_2, x_3 .

m 1 = 4 1 2 = 7 2 m_1 = 4 - \frac{1}{2} = \frac{7}{2}

m 3 = 5 1 2 = 9 2 m_3 = 5 - \frac{1}{2} = \frac{9}{2}

Using above result, m 2 = 63 32 m_2 = \frac{-63}{32}

Our required slope is slope on curve f ( x ) f(x) , which becomes - 63 32 + 1 2 = 47 32 \frac{-63}{32} + \frac{1}{2} = \frac{-47}{32} .

@Chaebum Sheen Would you mind if I share this beautiful theorem in a note?

Kartik Sharma - 4 years, 4 months ago

WE have stated at first all roots are unequal so how WE can assume X1=X2 and substitute it???

Dhruv Joshi - 4 years, 2 months ago
Kushal Bose
Jan 3, 2017

Let the points of intersections are A = ( p , p / 2 ) ; B = ( q , q / 2 ) ; C = ( r , r / 2 ) A=(p,p/2) ; B=(q,q/2); C=(r,r/2) where p < q < r p<q<r .As there are three intersections then

2 f ( x ) x = a ( x p ) ( x q ) ( x r ) 2f'(x)-x=a(x-p)(x-q)(x-r) .Now differentiating w.r.t x x

2 f ( x ) 1 = a [ ( x p ) ( x q ) + ( x q ) ( x r ) + ( x p ) ( x r ) ] 2f'(x)-1=a[(x-p)(x-q)+(x-q)(x-r)+(x-p)(x-r)]

Put x = p x=p then 2 f ( p ) 1 = a ( p q ) ( p r ) = > a ( p q ) ( p r ) = 7 2f'(p)-1=a(p-q)(p-r) => a(p-q)(p-r)=7

Put x = r x=r then 2 f ( r ) 1 = a ( r p ) ( r q ) = > a ( r p ) ( r q ) = 9 a ( p r ) ( q r ) = 9 2f'(r)-1=a(r-p)(r-q) => a(r-p)(r-q)=9 \implies a(p-r)(q-r)=9

Adding these two equations a ( p r ) ( p q + q r ) = 16 a ( p r ) 2 = 16 ( p r ) = 4 a a(p-r)(p-q+q-r)=16 \implies a(p-r)^2=16 \implies (p-r)=|\dfrac{4}{\sqrt{a}}|

Putting these values in the previous equations p q = 7 a × 4 a p-q=\dfrac{7}{a} \times |\dfrac{4}{\sqrt{a}}| and r q = 9 a × 4 a r-q=\dfrac{9}{a} \times |\dfrac{4}{\sqrt{a}}| )

Now put x = q x=q in the first equation 2 f ( q ) 1 = a ( q p ) ( q r ) 2f'(q)-1=a(q-p)(q-r) .Substituting these values

2 f ( q ) 1 = a × 7 a × 4 a × 9 a × 4 a 2f'(q)-1=a \times \dfrac{7}{a} \times |\dfrac{4}{\sqrt{a}}| \times \dfrac{9}{a} \times |\dfrac{4}{\sqrt{a}}|

Now the important part is to decide the modulus part when it will be negative or positive

As p r < 0 p-r<0 so , p r = 4 a p-r=- \frac{4}{\sqrt{a}}

So, 2 f ( q ) 1 = 63 16 = 1 63 16 = 47 16 f ( q ) = 47 32 2f'(q)-1=-\dfrac{63}{16}=1-\dfrac{63}{16}=-\dfrac{47}{16} \implies f'(q)=-\dfrac{47}{32}

Hm, since you started off assuming that p < q < r p < q < r , why do we need to do the cases below? In particular, we know that p r = 4 a p - r = - \frac{ 4 } { \sqrt{a} } since ( p < r ).

Calvin Lin Staff - 4 years, 5 months ago

Log in to reply

yeah that's true.

Kushal Bose - 4 years, 5 months ago

Log in to reply

Great. Can you simplify the solution then? Thanks!

Calvin Lin Staff - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...