From tangent to cotangent

Calculus Level 3

tan x cot x ln ( t 2 n ) 1 + t 2 d t \large \int_{\tan x}^{\cot x} \dfrac{\ln(t^{2n})}{1+t^2} \, dt

Let x ( 0 , π 2 ) x \in \left( 0 ,\dfrac\pi2\right) , and n n be any positive integer. Compute the integral above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Patrik Kovacs
Apr 19, 2016

W h a t i s t h e v a l u e o f t h e i n t e g r a l b e l o w : tan x cot x ln t 2 n 1 + t 2 d t , w h e r e x ( 0 , π 2 ) a n d n i s a p o s i t i v e i n t e g e r . S o l u t i o n : I f g : R R g ( x ) = ln x 2 n 1 + x 2 t h e n G s o t h a t G ( x ) = g ( x ) x R L e t b e f : ( 0 , π 2 ) R f ( x ) = tan x cot x ln t 2 n 1 + t 2 d t T h e n f ( x ) = G ( cot x ) G ( tan x ) f ( x ) = c o t x g ( cot x ) tan x g ( tan x ) = ( 1 + cot 2 x ) ln cot 2 n x 1 + cot 2 x ( 1 + tan 2 x ) ln tan 2 n x 1 + tan 2 x = = ( ln cot 2 n x + ln tan 2 n x ) = ln ( cot 2 n x tan 2 n x ) = ln 1 = 0 S o f ( x ) = 0 x ( 0 , π 2 ) t h e r e f o r e ( L a g r a n g e s t h e o r e m ) f ( x ) = c x ( 0 , π 2 ) ( c i s a c o n s t a n t , a r e a l n u m b e r ) B u t f ( π 4 ) = 1 1 ln t 2 n 1 + t 2 d t = 0 S o f i n a l l y t h e c o n s t a n t i s 0 , s o f ( x ) = 0 x ( 0 , π 2 ) a n d f o r a l l n p o s i t i v e i n t e g e r s . What\quad is\quad the\quad value\quad of\quad the\quad integral\quad below:\\ \int _{ \tan { x } }^{ \cot { x } }{ \frac { \ln { { t }^{ 2n } } }{ 1+{ t }^{ 2 } } } dt,\quad where\quad x\in \left( 0,\frac { \pi }{ 2 } \right) \quad and\quad n\quad is\quad a\quad positive\quad integer.\\ \\ Solution:\\ If\quad g:R*\rightarrow R\quad g\left( x \right) =\frac { \ln { { x }^{ 2n } } }{ 1+{ x }^{ 2 } } \quad then\quad \exists G\quad so\quad that\quad G'(x)=g(x)\quad \forall x\in R*\\ Let\quad be\quad f:\left( 0,\frac { \pi }{ 2 } \right) \rightarrow R\quad f(x)=\int _{ \tan { x } }^{ \cot { x } }{ \frac { \ln { { t }^{ 2n } } }{ 1+{ t }^{ 2 } } } dt\\ Then\quad f(x)=G(\cot { x } )-G(\tan { x } )\\ f'(x)=cot'x\cdot g(\cot { x } )-\tan { 'x\cdot } g(\tan { x } )=-(1+\cot ^{ 2 }{ x } )\cdot \frac { \ln { \cot ^{ 2n }{ x } } }{ 1+\cot ^{ 2 }{ x } } -(1+\tan ^{ 2 }{ x } )\cdot \frac { \ln { \tan ^{ 2n }{ x } } }{ 1+\tan ^{ 2 }{ x } } =\\ =-(\ln { \cot ^{ 2n }{ x } } +\ln { \tan ^{ 2n }{ x } } )=-\ln { (\cot ^{ 2n }{ x } } \cdot \tan ^{ 2n }{ x } )=-\ln { 1 } =0\\ So\quad f'(x)=0\quad \forall x\in \left( 0,\frac { \pi }{ 2 } \right) \quad therefore\quad (Lagrange's\quad theorem)\quad f(x)=c\quad \forall x\in \left( 0,\frac { \pi }{ 2 } \right) \quad (c\quad is\quad a\quad constant,\quad a\quad real\quad number)\\ But\quad f(\frac { \pi }{ 4 } )=\int _{ 1 }^{ 1 }{ \frac { \ln { { t }^{ 2n } } }{ 1+{ t }^{ 2 } } } dt=0\\ So\quad finally\quad the\quad constant\quad is\quad 0,\quad so\quad f(x)=0\quad \forall x\in \left( 0,\frac { \pi }{ 2 } \right) \quad and\quad for\quad all\quad n\quad positive\quad integers.\\

That explanation looks awful complicated to me. I just said that tanx and cotx must both be 0. Therefore the is evaluated between 0 and 0, so the answer must be zero as the limits cancel each other out. I don't know if that's mathematically correct given all the extra stuff you did. Was my thinking correct?

Craig Harrison - 5 years, 1 month ago
Aaghaz Mahajan
Jun 14, 2018

JEE Style..............
Simply put x = pi/4 !!!!

Let us call the integral as I I

Putting t = 1 z \large t=\frac{1}{z}

We get I = c o t ( x ) t a n ( x ) ln ( z 2 n ) 1 + 1 z 2 1 z 2 d z \large I= \int_{cot(x)}^{tan(x)}\frac{\ln(z^{-2n})}{1+\frac{1}{z^2}}\frac{-1}{z^2} dz

or I = t a n ( x ) c o t ( x ) ln ( z 2 n ) 1 + z 2 d z \large I= \int_{tan(x)}^{cot(x)}\frac{\ln(z^{-2n})}{1+z^2}dz

Which is the same as writing

I = t a n ( x ) c o t ( x ) ln ( t 2 n ) 1 + t 2 d t \large I= \int_{tan(x)}^{cot(x)}\frac{\ln(t^{-2n})}{1+t^2}dt

So 2 I = t a n ( x ) c o t ( x ) ln ( t 2 n t 2 n ) 1 + t 2 d t \large2I =\int_{tan(x)}^{cot(x)}\frac{\ln(t^{2n}t^{-2n})}{1+t^2}dt

So 2 I = t a n ( x ) c o t ( x ) ln ( 1 ) 1 + t 2 d t \large2I=\int_{tan(x)}^{cot(x)}\frac{\ln(1)}{1+t^2}dt

or 2 I = 0 \large 2I=0

Giving I = 0 \large I = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...