JMO 2002

Algebra Level 4

( b + c a ) 2 ( b + c ) 2 + a 2 + ( c + a b ) 2 ( c + a ) 2 + b 2 + ( a + b c ) 2 ( a + b ) 2 + c 2 \dfrac{(b+c-a)^2}{(b+c)^2+a^2}+\dfrac{(c+a-b)^2}{(c+a)^2+b^2}+\dfrac{(a+b-c)^2}{(a+b)^2+c^2}

If a , b a,b and c c are non-negative reals, find the minimum value of the above expression.


The answer is 0.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Son Nguyen
Feb 5, 2016

We need to prove this inequality: ( b + c a ) 2 ( b + c ) 2 + a 2 3 5 \sum \frac{(b+c-a)^2}{(b+c)^2+a^2}\geq \frac{3}{5} 2 a b + 2 a c a 2 + b 2 + c 2 + 2 b c 12 5 \Leftrightarrow \sum \frac{2ab+2ac}{a^2+b^2+c^2+2bc}\leq \frac{12}{5} Let s = a 2 + b 2 + c 2 s=a^2+b^2+c^2 5 s 2 a b + 10 s a 2 b c + 20 a 3 b 2 c 6 s 3 + 6 s 2 a b + 12 s a 2 b c + 48 a 2 b 2 c 2 0 5s^2\sum ab+10s\sum a^2bc+20a^3b^2c\leq 6s^3+6s^2\sum ab+12s\sum a^2bc+48a^2b^2c^2\geq 0 By applying Schur inequality: 4 a 4 b c 8 a 3 b 2 c + 4 a 2 b 2 c 2 0 \sum 4a^4bc-8a^3b^2c+4a^2b^2c^2\geq 0 We prove that: 3 a 6 + 2 a 5 b 2 a 4 b 2 a 4 b c + 2 a 3 b 3 4 a 3 b 2 c 2 0 \sum 3a^6+2a^5b-2a^4b^2-a^4bc+2a^3b^3-4a^3b^2c^2\geq 0 It's true because we have: 2 ( 2 a 6 + b 6 ) 3 a 4 b 2 0 ( 1 ) \frac{2\sum (2a^6+b^6)}{3}-a^4b^2\geq 0-(1) ( 4 a 6 + b 6 + c 6 ) 6 a 4 b c 0 ( 2 ) \frac{\sum (4a^6+b^6+c^6)}{6}-a^4bc\geq 0-(2) 2 ( 2 a 3 b 3 + c 3 a 3 ) 3 a 2 b 2 c 2 0 ( 3 ) \frac{2\sum (2a^3b^3+c^3a^3) }{3}-a^2b^2c^2\geq 0-(3) 2 ( 2 a 5 b + a 5 c + a b 5 + a c 5 ) 6 a 3 b 2 c 0 ( 4 ) \frac{2\sum (2a^5b+a^5c+ab^5+ac^5)}{6}-a^3b^2c\geq 0-(4) From (1)+(2)+(3)+(4) we can solve the problem. The equality holds when a=b=c.

@Pi Han Goh this is a Schur's problem.

Son Nguyen - 5 years, 3 months ago

Yeah,,typical use of Schur's inequality.

rajdeep brahma - 4 years, 1 month ago
P C
Dec 13, 2016

Without losing generality, we assume that a + b + c = 3 a+b+c=3 , the expression changed to c y c ( 3 2 a ) 2 ( 3 a ) 2 + a 2 \displaystyle\sum_{cyc}\frac{(3-2a)^2}{(3-a)^2+a^2} Now we prove this inequality ( 3 2 a ) 2 ( 3 a ) 2 + a 2 18 a 17 5 \frac{(3-2a)^2}{(3-a)^2+a^2}\geq\frac{18a-17}{5} 18 ( a 1 ) ( a 2 + 5 a + 1 ) ( 3 a ) 2 + a 2 0 ( T r u e f o r e v e r y a 0 ) \Leftrightarrow \frac{18(a-1)(-a^2+5a+1)}{(3-a)^2+a^2}\geq 0 \ (True \ for \ every \ a\geq 0\ ) Proving the similar inequality with b b and c c then combine all of them, we get c y c ( 3 2 a ) 2 ( 3 a ) 2 + a 2 18 ( a + b + c ) 51 5 = 3 5 \displaystyle\sum_{cyc}\frac{(3-2a)^2}{(3-a)^2+a^2}\geq\frac{18(a+b+c)-51}{5}=\frac{3}{5} The equality holds when a = b = c a=b=c

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...