( b + c ) 2 + a 2 ( b + c − a ) 2 + ( c + a ) 2 + b 2 ( c + a − b ) 2 + ( a + b ) 2 + c 2 ( a + b − c ) 2
If a , b and c are non-negative reals, find the minimum value of the above expression.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Pi Han Goh this is a Schur's problem.
Yeah,,typical use of Schur's inequality.
Without losing generality, we assume that a + b + c = 3 , the expression changed to c y c ∑ ( 3 − a ) 2 + a 2 ( 3 − 2 a ) 2 Now we prove this inequality ( 3 − a ) 2 + a 2 ( 3 − 2 a ) 2 ≥ 5 1 8 a − 1 7 ⇔ ( 3 − a ) 2 + a 2 1 8 ( a − 1 ) ( − a 2 + 5 a + 1 ) ≥ 0 ( T r u e f o r e v e r y a ≥ 0 ) Proving the similar inequality with b and c then combine all of them, we get c y c ∑ ( 3 − a ) 2 + a 2 ( 3 − 2 a ) 2 ≥ 5 1 8 ( a + b + c ) − 5 1 = 5 3 The equality holds when a = b = c
Problem Loading...
Note Loading...
Set Loading...
We need to prove this inequality: ∑ ( b + c ) 2 + a 2 ( b + c − a ) 2 ≥ 5 3 ⇔ ∑ a 2 + b 2 + c 2 + 2 b c 2 a b + 2 a c ≤ 5 1 2 Let s = a 2 + b 2 + c 2 5 s 2 ∑ a b + 1 0 s ∑ a 2 b c + 2 0 a 3 b 2 c ≤ 6 s 3 + 6 s 2 ∑ a b + 1 2 s ∑ a 2 b c + 4 8 a 2 b 2 c 2 ≥ 0 By applying Schur inequality: ∑ 4 a 4 b c − 8 a 3 b 2 c + 4 a 2 b 2 c 2 ≥ 0 We prove that: ∑ 3 a 6 + 2 a 5 b − 2 a 4 b 2 − a 4 b c + 2 a 3 b 3 − 4 a 3 b 2 c 2 ≥ 0 It's true because we have: 3 2 ∑ ( 2 a 6 + b 6 ) − a 4 b 2 ≥ 0 − ( 1 ) 6 ∑ ( 4 a 6 + b 6 + c 6 ) − a 4 b c ≥ 0 − ( 2 ) 3 2 ∑ ( 2 a 3 b 3 + c 3 a 3 ) − a 2 b 2 c 2 ≥ 0 − ( 3 ) 6 2 ∑ ( 2 a 5 b + a 5 c + a b 5 + a c 5 ) − a 3 b 2 c ≥ 0 − ( 4 ) From (1)+(2)+(3)+(4) we can solve the problem. The equality holds when a=b=c.