From where did that a a come from?

Algebra Level 4

3 x 2 + 2 x + a 2 x 2 + 3 x + 2 3 \frac {3x^{2}+2x+a}{2x^{2}+3x+2}\leq3 for all real x x

Then which one of the following values a a cannot take?

1.082 0 -1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
May 29, 2016

We have an expression : 3 x 2 + 2 x + a 2 x 2 + 3 x + 2 3 The Quadratic equation in the denominator is always greater than 0 as, D = 9 4 2 2 7 < 0 and the coefficient of x 2 2 > 0 , Now 3 x 2 + 2 x + a 6 x 2 9 x 6 2 x 2 + 3 x + 2 0 3 x 2 + 2 x + a 6 x 2 9 x 6 0 3 x 2 + 7 x + ( 6 a ) 0 The Discriminant of the equation should be less than or equal to 0 D 0 49 4 3 ( 6 a ) 0 a 23 12 < 2 Our Answer is 2 \text{We have an expression : }\dfrac{3x^2+2x+a}{2x^2+3x+2}\le3 \\ \text{The Quadratic equation in the denominator is always greater than 0} \\ \text{ as, D }= 9-4\cdot2\cdot2 \implies -7<0 \text{ and the coefficient of } x^2 \implies 2>0 \text{, Now } \\ \dfrac{3x^2+2x+a-6x^2-9x-6}{2x^2+3x+2}\le0 \\ 3x^2+2x+a-6x^2-9x-6\le0 \\ 3x^2+7x+(6-a)\ge0 \\ \text{The Discriminant of the equation should be less than or equal to 0} \\ D \le 0 \\ 49-4\cdot3\cdot(6-a)\le0 \\ a\le \dfrac{23}{12}<2 \\ \text{Our Answer is }\color{#3D99F6}{\boxed{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...