Fubini saves you

Calculus Level 2

0 1 t 3 1 ln ( t ) d t = ln A \large \int_{0}^{1} \frac{t^{3}-1}{\ln(t)} dt= \ln A

Given the above, find A A .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joseph Newton
Nov 24, 2018

Let I ( a ) = 0 1 t a 1 ln t d t d d a I ( a ) = 0 1 d d a t a 1 ln t d t using differentiation under the integral sign = 0 1 t a ln t ln t d t = 0 1 t a d t = [ t a + 1 a + 1 ] 0 1 = 1 a + 1 I ( a ) = 1 a + 1 d a = ln ( a + 1 ) + C now, I ( 0 ) = 0 1 t 0 1 ln t d t = 0 1 1 1 ln t d t = 0 ln ( 0 + 1 ) + C = 0 C = 0 I ( a ) = ln ( a + 1 ) 0 1 t 3 1 ln t = I ( 3 ) = ln 4 \begin{aligned}\text{Let }I(a)&=\int_0^1\frac{t^a-1}{\ln t}dt\\ \therefore\frac d{da}I(a)&=\int_0^1\frac d{da}\frac{t^a-1}{\ln t}dt&\text{using differentiation under the integral sign}\\ &=\int_0^1\frac{t^a\ln t}{\ln t}dt\\ &=\int_0^1 t^a\,dt\\ &=\left[\frac{t^{a+1}}{a+1}\right]_0^1\\ &=\frac1{a+1}\\ \therefore I(a)&=\int\frac1{a+1}da\\ &=\ln(a+1)+C\\ \text{now, }I(0)&=\int_0^1\frac{t^0-1}{\ln t}dt=\int_0^1\frac{1-1}{\ln t}dt=0\\ \therefore\ln(0+1)+C&=0\\ \therefore C&=0\\ \therefore I(a)&=\ln(a+1)\\ \therefore \int_0^1\frac{t^3-1}{\ln t}&=I(3)=\ln4\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...