Fully Functioning

Algebra Level 2

When x = 15 x = 15 , f ( x ) = 25 f(x) = 25 . Given that function f f is a linear function and that f ( 10 ) = 0 f(-10) = 0 , find f ( 1327 ) f(1327) .


The answer is 1337.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jun 30, 2016

Let A ( 15 , 25 ) , B ( 10 , 0 ) , C ( 1327 , α ) A\equiv(15,25),B\equiv(-10,0),C\equiv(1327,\alpha) .

Since function represents a straight line. ( Slope ) A B = ( Slope ) B C \implies (\text{Slope})_{AB}=(\text{Slope})_{BC}

25 0 15 ( 10 ) = α 0 1327 ( 10 ) ( Point Slope Form ) \implies \dfrac{25-0}{15-(-10)}=\dfrac{\alpha-0}{1327-(-10)}\\~~~~~~(\small{\color{#20A900}{\text{Point Slope Form}}})

α = 1337 \implies \alpha=\boxed{1337}

Viki Zeta
Jun 30, 2016

f(x) is a linear function. So f(x) = ax + b; a,b are constant f ( 15 ) = 25 = 15 a + b . . . . ( 1 ) f ( 10 ) = 0 = 10 a + b . . . . ( 2 ) ( 1 ) ( 2 ) = > 25 = 25 a = > a = 1 using a = 1 in (2) gives you b = 10 T h e r e f o r e , f ( x ) = x + 10 = > f ( 1327 ) = 1327 + 10 = 1337 \text{f(x) is a linear function. So f(x) = ax + b; a,b are constant} \\ f(15) = 25 = 15a + b .... (1)\\ f(-10) = 0 = -10a + b .... (2) \\ \text{ }\\ (1) - (2)\\ => 25 = 25a\\ => a = 1\\ \text{using a = 1 in (2) gives you} \\ b = 10\\ Therefore, f(x) = x + 10 \\ => f(1327) = 1327 + 10 = 1337

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...