Fun with 2018 #10

We define a sequence by recurrence as a 1 = 2018 a_1 = 2018 and a n + 1 = 201 8 a n a_{n + 1} = 2018^{a_n} for all natural number n 1 n \ge 1 . What are the 5 last digits of a 2018 a_{2018} ?


The answer is 79776.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

201 8 4 0 mod (4) 2018^4 \equiv 0 \text{ mod (4)} and 201 8 4 1 mod (25) 2018^4 \equiv 1 \text{ mod (25)} . This is a surprising property for powers of 2018 2018 . This implies that

a) n N \forall \space n \in \mathbb{N} such that n > 2 n > 2 , the last 2 digits of 201 8 n 2018^n are equal to the 2 last digits of 201 8 n + 4 2018^{n + 4} , i. e, 201 8 n 2018^n only can end at 76 , 68 , 32 76, 68, 32 or 24 24 if n > 2 n > 2 .

b) n N \forall \space n \in \mathbb{N} such that n > 3 n > 3 , the last 3 digits of 201 8 n 2018^n are equal to the 3 last digits of 201 8 n + 20 2018^{n + 20} .

c) n N \forall \space n \in \mathbb{N} such that n > 4 n > 4 , the last 4 digits of 201 8 n 2018^n are equal to the 4 last digits of 201 8 n + 100 2018^{n + 100} .

d) n N \forall \space n \in \mathbb{N} such that n > 5 n > 5 , the last 5 digits of 201 8 n 2018^n are equal to the 5 last digits of 201 8 n + 500 2018^{n + 500} ...

On the other hand, the sequence a n a_n has another surprising proprerty:

a) n N \forall \space n \in \mathbb{N} such that n > 3 n > 3 , the last 2 digits of a 3 a_3 which are 76 76 are equal to the 2 last digits of a n a_n , and the 2 last digits of 201 8 76 2018^{76} are 76 76 , i.e, 201 8 76 76 mod (100) 2018^{76} \equiv 76 \text{ mod (100)}

b) n N \forall \space n \in \mathbb{N} such that n > 4 n > 4 , the last 3 digits of a 4 a_4 which are 776 776 are equal to the 3 last digits of a n a_n , and the 3 last digits of 201 8 776 2018^{776} are 776 776 , i.e, 201 8 776 776 mod (1000) 2018^{776} \equiv 776 \text{ mod (1000)} .

c) n N \forall \space n \in \mathbb{N} such that n > 5 n > 5 , the last 4 digits of a 5 a_5 which are 9776 9776 are equal to the 4 last digits of a n a_n , and the 4 last digits of 201 8 9776 2018^{9776} are 9776 9776 , i.e, 201 8 9776 9776 mod (10000) 2018^{9776} \equiv 9776 \text{ mod (10000)} .

d) n N \forall \space n \in \mathbb{N} such that n > 6 n > 6 , the last 5 digits of a 6 a_6 which are 79776 79776 are equal to the 5 last digits of a n a_n , and the 5 last digits of 201 8 79776 2018^{79776} are 79776 79776 , i.e, 201 8 79776 79776 mod (100000) 2018^{79776} \equiv 79776 \text{ mod (100000)} .

e) n N \forall \space n \in \mathbb{N} such that n > 7 n > 7 , the last 6 digits of a 7 a_7 which are 379776 379776 are equal to the 6 last digits of a n a_n , and the 6 last digits of 201 8 379776 2018^{379776} are 379776 379776 , i.e, 201 8 379776 379776 mod (1000000) 2018^{379776} \equiv 379776 \text{ mod (1000000)} ....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...