Fun with 2018 #12 (Gauss, Prince of Mathematics)

Geometry Level 4

2018 tan ( 1 1 + 1 3 + 4 5 + 9 7 + 16 9 + ) \displaystyle \huge 2018 \cdot \tan \left ( \frac{1}{1 + \frac{1}{3 + \frac{ 4 }{5 + \frac{9 }{7 + \frac{ 16 }{9 + \ddots}}}}} \right)

What is the value of the above expression where the angle is expressed in radians?


The answer is 2018.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

If z 1 |z| \leq 1 , Gauss's continued fraction for arctan(z) \text{arctan(z)} obtained from its MacLaurin series is: arctan (z) = ( z 1 + ( 1 z ) 2 3 + ( 2 z ) 2 5 + ( 3 z ) 2 7 + ( 4 z ) 2 9 + ) \displaystyle \huge \text{arctan (z) = } \left ( \frac{z}{1 + \frac{(1z)^2}{3 + \frac{ (2z)^2 }{5 + \frac{(3z)^2 }{7 + \frac{(4z)^2 }{9 + \ddots}}}}} \right) Substituing z = 1 z = 1 , we get the result because π 4 = arctan (1) = 1 1 + 1 2 3 + 2 2 5 + 3 2 7 + 4 2 9 + \displaystyle \large \frac{\pi}{4} = \text{arctan (1) = } \frac{1}{1 + \frac{1^2}{3 + \frac{ 2^2 }{5 + \frac{3^2 }{7 + \frac{4^2 }{9 + \ddots}}}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...