Fun with 2018 #13 (Archimedes and the beauty of circle)

Calculus Level 3

lim n 2018 sin ( 2 π 2018 ) k = 0 n cos ( π 2 k 2018 ) = ? \large \lim_{n \to \infty} \frac{2018 \sin \left(\frac{2 \pi}{2018}\right)}{\prod_{k = 0}^{n} \cos \left(\frac{\pi}{2^k \cdot 2018}\right)} =\ ?


The answer is 6.2831853.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim n 2018 sin ( 2 π 2018 ) k = 0 n cos ( π 2 k 2018 ) Let θ = π 2018 = lim n 2018 sin ( 2 θ ) k = 0 n cos ( θ 2 k ) See note. = lim n 2018 sin ( 2 θ ) sin ( 2 θ ) 2 n + 1 sin θ 2 n = lim n 2018 2 n + 1 sin θ 2 n = lim n 4036 θ sin θ 2 n θ 2 n Note that lim x 0 sin x x = 1 = 4036 θ = 4036 π 2018 = 2 π 6.283 \begin{aligned} L & = \lim_{n \to \infty} \frac {2018 \sin \left(\frac {2\pi}{2018} \right)}{\prod_{k=0}^n \cos \left(\frac \pi{2^k\cdot 2018}\right)} & \small \color{#3D99F6} \text{Let } \theta = \frac \pi {2018} \\ & = \lim_{n \to \infty} \frac {2018 \sin \left( 2\theta \right)}{\color{#3D99F6} \prod_{k=0}^n \cos \left(\frac \theta {2^k}\right)} & \small \color{#3D99F6} \text{See note.} \\ & = \lim_{n \to \infty} \frac {2018 \sin \left( 2\theta \right)}{\color{#3D99F6}\frac {\sin (2\theta)}{2^{n+1}\sin \frac \theta{2^n}}} \\ & = \lim_{n \to \infty} 2018\cdot 2^{n+1} \sin \frac \theta {2^n} \\ & = \lim_{n \to \infty} 4036 \cdot \frac {\theta \color{#3D99F6}\sin \frac \theta {2^n}}{\color{#3D99F6}\frac \theta{2^n}} & \small \color{#3D99F6} \text{Note that }\lim_{x \to 0} \frac {\sin x}x = 1 \\ & = 4036 \theta = 4036 \cdot \frac \pi{2018} \\ & = 2\pi \approx \boxed{6.283} \end{aligned}


Note: Prove by induction that P n = k = 0 n cos θ 2 k = sin 2 θ 2 n + 1 sin θ 2 n \displaystyle P_n = \prod_{k=0}^n \cos \frac \theta{2^k} = \frac {\sin 2\theta}{2^{n+1} \sin \frac \theta{2^n}} for all n 0 n \ge 0 .

For n = 0 n=0 , P 0 = k = 0 0 cos θ 2 k = cos θ = sin 2 θ sin θ \displaystyle P_0 = \prod_{k=0}^0 \cos \frac \theta{2^k} = \cos \theta = \frac {\sin 2\theta}{\sin \theta} . Therefore, the claim is true for n = 0 n = 0 . Now assuming that the claim is true for n n , then P n + 1 = k = 0 n + 1 cos θ 2 k = ( k = 0 n cos θ 2 k ) cos θ 2 n + 1 = sin 2 θ 2 n + 1 sin θ 2 n cos θ 2 n + 1 = sin 2 θ 2 n + 2 sin θ 2 n + 1 \displaystyle P_{n+1} = \prod_{k=0}^{n+1} \cos \frac \theta{2^k} = \left(\prod_{k=0}^n \cos \frac \theta{2^k}\right)\cdot \cos \frac \theta{2^{n+1}} = \frac {\sin 2\theta}{2^{n+1} \sin \frac \theta{2^n}} \cdot \cos \frac \theta{2^{n+1}} = \frac {\sin 2\theta}{2^{n+2} \sin \frac \theta{2^{n+1}}} . Therefore, the claim is true for n + 1 n+1 and hence true for all n 0 n \ge 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...