Fun with 2018 #2

Geometry Level 3

sin ( π 1009 ) + sin ( 2 π 1009 ) + sin ( 3 π 1009 ) + + sin ( 1008 π 1009 ) = cos ( π 2018 ) cos ( A π 2018 ) 2 sin ( π 2018 ) \sin \left(\frac{\pi}{1009}\right) + \sin \left(\frac{2\pi}{1009}\right) + \sin \left(\frac{3\pi}{1009}\right) + \ldots + \sin \left(\frac{1008\pi}{1009}\right) = \frac{\cos \left(\frac{\pi}{2018}\right) - \cos \left(\frac{A \pi}{2018}\right)}{2\sin \left(\frac{\pi}{2018}\right)}

What is the smallest positive integer A A such that the equation above is satisfied?


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Euler's Formula

S = k = 1 1008 sin ( k π 1009 ) By Euler’s formula: e θ i = cos θ + i sin θ = ( k = 1 1008 e k π 1009 i ) where ( z ) is the imaginary part of z . = ( e π 1009 i ( 1 e 1008 π 1009 i 1 e π 1009 i ) ) = ( e π 1009 i e π i 1 e π 1009 i ) \begin{aligned} S & = \sum_{k=1}^{1008} \sin \left(\frac {k\pi}{1009}\right) & \small \color{#3D99F6} \text{By Euler's formula: } e^{\theta i} = \cos \theta + i \sin \theta \\ & = \Im \left(\sum_{k=1}^{1008} e^{\frac {k\pi}{1009}i} \right) & \small \color{#3D99F6} \text{where }\Im(z) \text{ is the imaginary part of }z. \\ & = \Im \left(e^{\frac {\pi}{1009}i}\left(\frac {1-e^{\frac {1008\pi}{1009}i}}{1-e^{\frac {\pi}{1009}i}} \right)\right) \\ & = \Im \left(\frac {e^{\frac {\pi}{1009}i}-e^{\pi i}}{1-e^{\frac {\pi}{1009}i}}\right) \end{aligned}

= ( cos ( π 1009 ) + i sin ( π 1009 ) + 1 1 cos ( π 1009 ) i sin ( π 1009 ) ) = ( ( 1 + cos ( π 1009 ) + i sin ( π 1009 ) ) ( 1 cos ( π 1009 ) + i sin ( π 1009 ) ) ( 1 cos ( π 1009 ) i sin ( π 1009 ) ) ( 1 cos ( π 1009 ) + i sin ( π 1009 ) ) ) = ( 2 i sin ( π 1009 ) 2 2 cos ( π 1009 ) ) = sin ( π 1009 ) 1 cos ( π 1009 ) = 2 sin ( π 2018 ) cos ( π 2018 ) 1 ( 1 2 sin 2 ( π 2018 ) ) = 2 cos ( π 2018 ) 2 sin ( π 2018 ) \begin{aligned} \ \ & = \Im \left(\frac {\cos \left(\frac {\pi}{1009} \right) + i\sin \left(\frac {\pi}{1009} \right) + 1}{1-\cos \left(\frac {\pi}{1009} \right) - i\sin \left(\frac {\pi}{1009} \right) }\right) \\ & = \Im \left(\frac {\left(1 + \cos \left(\frac {\pi}{1009} \right) + i\sin \left(\frac {\pi}{1009} \right) \right) \left(1-\cos \left(\frac {\pi}{1009} \right) + i\sin \left(\frac {\pi}{1009} \right) \right) }{\left(1-\cos \left(\frac {\pi}{1009} \right) - i\sin \left(\frac {\pi}{1009} \right) \right) \left(1-\cos \left(\frac {\pi}{1009} \right) + i\sin \left(\frac {\pi}{1009} \right) \right)}\right) \\ & = \Im \left(\frac {2 i \sin \left(\frac {\pi}{1009} \right)}{2-2\cos \left(\frac {\pi}{1009} \right)}\right) \\ & = \frac {\sin \left(\frac {\pi}{1009} \right)}{1-\cos \left(\frac {\pi}{1009} \right)} \\ & = \frac {2\sin \left(\frac {\pi}{2018} \right)\cos \left(\frac {\pi}{2018} \right)}{1-\left(1 - 2\sin^2 \left(\frac {\pi}{2018} \right)\right)} \\ & = \frac {2 \cos \left(\frac {\pi}{2018} \right)}{2\sin \left(\frac {\pi}{2018} \right)} \end{aligned}

= cos ( π 2018 ) + cos ( π 2018 ) 2 sin ( π 2018 ) Note that cos ( π θ ) = cos θ = cos ( π 2018 ) cos ( 2017 π 2018 ) 2 sin ( π 2018 ) \begin{aligned} \ \ & = \frac {\cos \left(\frac {\pi}{2018} \right) + \color{#3D99F6} \cos \left(\frac {\pi}{2018} \right)}{2\sin \left(\frac {\pi}{2018} \right)} & \small \color{#3D99F6} \text{Note that }\cos (\pi - \theta) = - \cos \theta \\ & = \frac {\cos \left(\frac {\pi}{2018} \right) - \color{#3D99F6} \cos \left(\frac {2017\pi}{2018} \right)}{2\sin \left(\frac {\pi}{2018} \right)} \end{aligned}

Therefore, A = 2017 A = \boxed{2017} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...