Fun with 2018 #3

Calculus Level 3

cos ( π 2018 ) = n = 0 ( 1 a ( 2018 ( 2 n + 1 ) ) 2 ) \large \cos \left(\frac{\pi}{2018}\right) = \prod_{n = 0}^\infty \left (1 - \frac{a}{(2018(2n + 1))^2} \right )

What is the value of a a such that the equation above is satisfied?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

cos ( π 2018 ) = n = 0 ( 1 a ( 2018 ( 2 n + 1 ) ) 2 ) Let s = a 2018 = n = 0 ( 1 s 2 ( 2 n + 1 ) 2 ) = ( 1 s 2 1 2 ) ( 1 s 2 3 2 ) ( 1 s 2 5 2 ) ( 1 s 2 7 2 ) = ( 1 s 2 1 2 ) ( 1 s 2 2 2 ) ( 1 s 2 3 2 ) ( 1 s 2 4 2 ) ( 1 s 2 2 2 ) ( 1 s 2 4 2 ) ( 1 s 2 6 2 ) ( 1 s 2 8 2 ) = ( 1 s 2 1 2 ) ( 1 s 2 2 2 ) ( 1 s 2 3 2 ) ( 1 s 2 4 2 ) ( 1 ( s / 2 ) 2 1 2 ) ( 1 ( s / 2 ) 2 2 2 ) ( 1 ( s / 2 ) 2 3 2 ) = n = 1 ( 1 s 2 n 2 ) n = 1 ( 1 ( s / 2 ) 2 n 2 ) By identity: s π n = 1 ( 1 s 2 n 2 ) = sin ( s π ) = sin ( s π ) 2 sin ( s π 2 ) = 2 sin ( s π 2 ) cos ( s π 2 ) 2 sin ( s π 2 ) = cos ( s π 2 ) = cos ( a π 4036 ) a 4036 = 1 2018 a = 4 \begin{aligned} \cos \left(\frac \pi{2018}\right) & = \prod_{n=0}^\infty \left(1-\frac a{(2018(2n+1))^2} \right) & \small \color{#3D99F6} \text{Let }s = \frac {\sqrt a}{2018} \\ & = \prod_{n=0}^\infty \left(1-\frac {s^2}{(2n+1)^2} \right) \\ & = \left(1-\frac {s^2}{1^2} \right) \left(1-\frac {s^2}{3^2} \right) \left(1-\frac {s^2}{5^2} \right) \left(1-\frac {s^2}{7^2} \right) \cdots \\ & = \frac {\left(1-\frac {s^2}{1^2} \right) \left(1-\frac {s^2}{2^2} \right) \left(1-\frac {s^2}{3^2} \right) \left(1-\frac {s^2}{4^2} \right) \cdots}{\left(1-\frac {s^2}{2^2} \right) \left(1-\frac {s^2}{4^2} \right) \left(1-\frac {s^2}{6^2} \right) \left(1-\frac {s^2}{8^2} \right) \cdots} \\ & = \frac {\left(1-\frac {s^2}{1^2} \right) \left(1-\frac {s^2}{2^2} \right) \left(1-\frac {s^2}{3^2} \right) \left(1-\frac {s^2}{4^2} \right) \cdots}{\left(1-\frac {(s/2)^2}{1^2} \right) \left(1-\frac {(s/2)^2}{2^2} \right) \left(1-\frac {(s/2)^2}{3^2} \right) \cdots} \\ & = \frac {\prod_{n=1}^\infty \left(1-\frac {s^2}{n^2}\right)} {\prod_{n=1}^\infty \left(1-\frac {(s/2)^2}{n^2}\right)} & \small \color{#3D99F6} \text{By identity: } s \pi \prod_{n=1}^\infty \left(1-\frac {s^2}{n^2}\right) = \sin (s\pi) \\ & = \frac {\sin (s\pi)}{2\sin \left(\frac {s\pi}2\right)} = \frac {2\sin \left(\frac {s\pi}2\right)\cos \left(\frac {s\pi}2\right)}{2\sin \left(\frac {s\pi}2\right)} \\ & = \cos \left(\frac {s\pi}2\right) = \cos \left(\frac {\sqrt a\pi}{4036} \right) \\ \implies \frac {\sqrt a}{4036} & = \frac 1{2018} \\ a & = \boxed{4} \end{aligned}


Reference for s π n = 1 ( 1 s 2 n 2 ) = sin ( s π ) \displaystyle s \pi \prod_{n=1}^\infty \left(1-\frac {s^2}{n^2}\right) = \sin (s\pi) see equation 22 .

Very nice solution! (+1)

Guillermo Templado - 3 years, 4 months ago

Log in to reply

Glad that you like it. Very nice problem.

Chew-Seong Cheong - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...