Fun with 2018 #4

Calculus Level 5

n = 1 ( 1 ) n 1 2 n ( 2 n 1 ) ( 1 2018 ) 2 n = 1 2018 arctan ( 1 2018 ) 1 2 log ( 1 + 1 A ) \large \sum_{n = 1}^\infty \frac {(-1)^{n - 1}}{2n(2n - 1)}\left (\frac{1}{2018} \right )^{2n} = \frac{1}{2018} \arctan \left (\frac{1}{2018} \right ) - \frac{1}{2}\log \left(1 + \frac{1}{A}\right)

What is the value of A A such that the equation above is satisfied?


The answer is 4072324.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Maclaurin Series

S = n = 1 ( 1 ) n 1 x 2 n 2 n ( 2 n 1 ) where x = 1 2018 = n = 1 ( 1 ) n 1 x 2 n ( 1 2 n 1 1 2 n ) = x n = 1 ( 1 ) n 1 x 2 n 1 2 n 1 1 2 n = 1 ( 1 ) n 1 x 2 n n By Maclaurin series = x arctan x 1 2 log ( 1 + x 2 ) Putting back x = 1 2018 = 1 2018 arctan ( 1 2018 ) 1 2 log ( 1 + 1 201 8 2 ) \begin{aligned} S & = \sum_{n=1}^\infty \frac {(-1)^{n-1}{\color{#3D99F6}x}^{2n}}{2n(2n-1)} & \small \color{#3D99F6} \text{where }x = \frac 1{2018} \\ & = \sum_{n=1}^\infty (-1)^{n-1}x^{2n}\left(\frac 1{2n-1} - \frac 1{2n}\right) \\ & = x \sum_{n=1}^\infty \frac {(-1)^{n-1}x^{2n-1}}{2n-1} - \frac 12 \sum_{n=1}^\infty \frac {(-1)^{n-1}x^{2n}}n & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = x \arctan x - \frac 12 \log \left(1+x^2\right) & \small \color{#3D99F6} \text{Putting back }x = \frac 1{2018} \\ & = \frac 1{2018} \arctan \left(\frac 1{2018}\right) - \frac 12 \log \left(1+\frac 1{2018^2} \right) \end{aligned}

Therefore, A = 201 8 2 = 4072324 A = 2018^2 = \boxed{4072324} .

n = 1 ( 1 ) n 1 2 n 1 x 2 n 1 = arctan (x) , x R \displaystyle \sum_{n = 1}^\infty \frac{(-1)^{n -1}}{2n - 1} x^{2n - 1} = \text {arctan (x)}, \forall \space x \in \mathbb{R} such that x 1 |x| \leq 1 . Hence, integrating n = 1 ( 1 ) n 1 2 n ( 2 n 1 ) x 2 n = 0 x arctan (t) d t = x arctan (x) 1 2 log ( 1 + x 2 ) , x R \displaystyle \sum_{n = 1}^\infty \frac{(-1)^{n -1}}{2n(2n - 1)} x^{2n} = \int_{0}^x \text {arctan (t)} \, dt = x \cdot \text {arctan (x)} - \frac{1}{2} \log (1 + x^2), \forall \space x \in \mathbb{R} as long as x 1 |x| \leq 1 . Substituing x = 1 2018 x = \frac{1}{2018} we get A = 201 8 2 = 4072324 A = 2018^2 = 4072324

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...