Fun with 2018 #8

Calculus Level 3

lim x ( x 3 + 2018 x 2 3 x 3 2018 x 2 3 ) = A B 2018 \displaystyle \lim_{x \to \infty} \left ( \sqrt[3]{x^3 + 2018x^2} - \sqrt[3]{x^3 - 2018x^2} \right ) = \frac{A}{B} \cdot 2018 with A , B A, B coprime positive integers.

  • Enter 10 A B 10A - B


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1 \boxed{1} Let a a be areal number, lim x ( x 3 + a x 2 3 x 3 a x 2 3 ) = lim x ( x 3 + a x 2 3 x 3 a x 2 3 ) ( ( x 3 + a x 2 ) 2 3 + ( x 3 + a x 2 ) 3 ( x 3 a x 2 ) + ( x 3 a x 2 ) 2 3 ) ( ( x 3 + a x 2 ) 2 3 + ( x 3 + a x 2 ) 3 ( x 3 a x 2 ) + ( x 3 a x 2 ) 2 3 ) = \displaystyle \lim_{x \to \infty} \left ( \sqrt[3]{x^3 + ax^2} - \sqrt[3]{x^3 - ax^2} \right ) = \lim_{x \to \infty} \frac{\left ( \sqrt[3]{x^3 + ax^2} - \sqrt[3]{x^3 - ax^2} \right ) \cdot \left ( \sqrt[3]{(x^3 + ax^2)^2} + \sqrt[3]{(x^3 + ax^2)} \sqrt{(x^3 -ax^2)} + \sqrt[3]{(x^3 - ax^2)^2} \right )}{\left ( \sqrt[3]{(x^3 + ax^2)^2} + \sqrt[3]{(x^3 + ax^2)} \sqrt{(x^3 -ax^2)} + \sqrt[3]{(x^3 - ax^2)^2} \right )} = = lim x ( ( x 3 + a x 2 ) ( x 3 a x 2 ) ) ( ( x 3 + a x 2 ) 2 3 + ( x 3 + a x 2 ) 3 ( x 3 a x 2 ) + ( x 3 a x 2 ) 2 3 ) = = \displaystyle \lim_{x \to \infty} \frac{\left ( (x^3 + ax^2) - (x^3 - ax^2) \right )}{\left ( \sqrt[3]{(x^3 + ax^2)^2} + \sqrt[3]{(x^3 + ax^2)} \sqrt{(x^3 -ax^2)} + \sqrt[3]{(x^3 - ax^2)^2} \right )} = = lim x 2 a x 2 ( ( x 6 + 2 a x 5 + a 2 x 4 ) 3 + ( x 6 a 2 x 4 ) 3 + ( x 6 2 a x 5 + a 2 x 4 ) 3 ) = = \displaystyle \lim_{x \to \infty} \frac{2ax^2}{\left ( \sqrt[3]{(x^6 + 2ax^5 + a^2 x^4)} + \sqrt[3]{(x^6 - a^2 x^4)} + \sqrt[3]{(x^6 - 2ax^5 + a^2 x^4)} \right )} = (dividing numerator and denominator by x 2 = x 6 3 x^2 = \sqrt[3]{x^6} ) = lim x 2 a ( ( 1 + 2 a x + a 2 x 2 ) 3 + ( 1 a 2 x 2 ) 3 + ( 1 2 a x + a 2 x 2 ) 3 ) = 2 a 3 . = \lim_{x \to \infty} \frac{2a}{\left ( \sqrt[3]{(1 + \frac{2a}{x} + \frac{a^2}{x^2})} + \sqrt[3]{(1 - \frac{a^2}{x^2})} + \sqrt[3]{(1 - \frac{2a}{x} + \frac{a^2}{ x^2})} \right )} = \frac{2a}{3}. Substituing a = 2018 a = 2018 we get the result.

2 \boxed{2} If x < 1 |x| < 1 , 1 + x 3 = n = 0 ( 1 / 3 n ) x n \displaystyle \quad \sqrt[3]{1 + x} = \sum_{n = 0}^\infty {1/3 \choose n} x^n . ( ( 1 / 3 n ) = ( 1 / 3 ) ( 1 / 3 1 ) ( 1 / 3 ( n 1 ) ) n ! ) \quad \left ( {1/3 \choose n} = \frac{(1/3) \cdot (1/3 - 1) \cdot \ldots \cdot (1/3 - (n - 1))}{n!} \right ) \quad . Due to 2018 x < 1 \frac{2018}{x} < 1 as x x \to \infty , lim x ( x 3 + 2018 x 2 3 x 3 2018 x 2 3 ) = lim x x ( 1 + 2018 x 3 1 2018 x 3 ) = lim x x ( ( 1 + 1 3 2018 x + o ( 2018 x ) ) ( 1 1 3 2018 x + o ( 2018 x ) ) ) \displaystyle \lim_{x \to \infty} \left ( \sqrt[3]{x^3 + 2018x^2} - \sqrt[3]{x^3 - 2018x^2} \right ) = \lim_{x \to \infty} x\left ( \sqrt[3]{1 + \frac{2018}{x}} - \sqrt[3]{1 - \frac{2018}{x}} \right ) = \lim_{x \to \infty} x \left ( (1 + \frac{1}{3} \cdot \frac{2018}{x} + o(\frac{2018}{x})) - (1 - \frac{1}{3} \cdot \frac{2018}{x} + o(\frac{2018}{x})) \right ) = 2 3 2018 = \frac{2}{3} \cdot 2018

I also did the second solution using the binomial expansion of |x|<1 which is quite short and nice too Nice solutions !! :)

Naren Bhandari - 3 years, 3 months ago

Log in to reply

thank you friend.

Guillermo Templado - 3 years, 3 months ago
Naren Bhandari
Feb 14, 2018

L = lim x [ ( x 3 + 2018 x 2 ) 1 3 ( x 3 2018 x 2 ) 1 3 ] = lim x [ x ( 1 + 2018 x ) 1 3 x ( 1 2018 x ) 1 3 ] = lim x [ ( 1 + 2018 x ) 1 3 ( 1 2018 x ) 1 3 1 x ] \begin{aligned}& \text{L} = \displaystyle\lim_{x\to\infty} \left[({x^3+2018x^2})^{\frac{1}{3}} - ({x^3-2018x^2})^{\frac{1}{3}}\right]\\& =\displaystyle\lim_{x\to\infty}\left[x({1+\frac{2018}{x}})^{\frac{1}{3}} - x({1-\frac{2018}{x}})^{\frac{1}{3}}\right] \\& = \displaystyle\lim_{x\to\infty}\left[\frac{(1+\frac{2018}{x})^{\frac{1}{3}}-(1-\frac{2018}{x})^{\frac{1}{3}}}{\frac{1}{x}}\right]\end{aligned} On placing the value of x = 0 x=0 then L = 0 0 \text{L} =\frac{0}{0} form so now applying L-Hopital's rules We get

L = lim x [ 2018 3 x 2 ( 1 + 2018 x ) 2 3 2018 3 x 2 ( 1 2018 x ) 2 3 1 x 2 ] = 2018 3 lim x [ 1 x 2 ( 1 + 2018 x ) 2 3 + ( 1 2018 x ) 2 3 1 x 2 ] = 2018 3 lim x [ ( 1 + 2018 x ) 2 3 + ( 1 2018 x ) 2 3 ] \begin{aligned}& \text{L} = \displaystyle\lim_{x\to\infty}\left[\frac{\frac{-2018}{3x^2}(1+\frac{2018}{x})^{-\frac{2}{3}}-\frac{2018}{3x^2}(1-\frac{2018}{x})^{-\frac{2}{3}}}{-\frac{1}{x^2}}\right]\\& = \frac{2018}{3} \displaystyle\lim_{x\to\infty}\left[-\frac{1}{x^2}\frac{(1+\frac{2018}{x})^{-\frac{2}{3}}+ (1-\frac{2018}{x})^{-\frac{2}{3}}}{-\frac{1}{x^2}}\right]\\&= \frac{2018}{3}\displaystyle\lim_{x\to\infty}\left[(1+\frac{2018}{x})^{-\frac{2}{3}}+ (1-\frac{2018}{x})^{-\frac{2}{3}}\right] \end{aligned} L = 2 3 . 2018 = A B . 2018 \begin{aligned}\text{L} = \frac{2}{3}. 2018 = \frac{A}{B}.2018\end{aligned} Hence the value of 10 A B = 17 10A - B =\boxed{17}

Yes, correct, this is a way to do it. I think you should expand this solution a little bit, but it's correct. I have 2 ways more to do it...

Guillermo Templado - 3 years, 3 months ago

Log in to reply

I have expanded the solution now . Thank you Sir for the compliment . I would be glad if share you solutions too. :)

Naren Bhandari - 3 years, 3 months ago

Log in to reply

ok,give me some time, I hope to write them tomorrow morning. Don't call me sir, call me friend or Guillermo, thanks anyway. You shouldn't take 2018 x 2 \frac{-2018}{x^2} out the limit, btw, but it's a little typo, it doesn't matter.

Guillermo Templado - 3 years, 3 months ago

It's easier to let y = 1 x y = \frac1x before you invoke L'hopital rule.

Pi Han Goh - 3 years, 3 months ago

Log in to reply

Oh!! I see Sir now that can reduces the coding the latex and a bit clear solutions than I did for which y 0 y\to 0 .

Naren Bhandari - 3 years, 3 months ago

Log in to reply

Furthermone, using y = 1 x y = \frac1x , we can choose to evaluate this limit via rationalization .

Pi Han Goh - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...