Fun with 2018 #9

Geometry Level 4

Among all the triangles with a same side a = 2018 a = 2018 units, and opposite angle A = 19 π 2018 \angle A = \frac{19 \pi}{2018} radians, the measure of the largest angle of that with the largest area can be written as P Q π 2018 \frac{P}{Q} \cdot \frac{\pi}{2018} radians, with P P and Q Q being coprime positive integers.

Enter P + 10 Q 1 P + 10Q - 1 .


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Here's a solution with the least use of trignometry.

In this solution, sides opposite to vertex B B and C C are b b and c c respectively

We find that all triangles with side a = 2018 a=2018 and opposite angle 19 π 2018 \dfrac{19\pi}{2018} can be formed with point A on the arc B C BC .

We know that the area of a triangle is given by-

Δ = 1 2 b c sin A \Delta=\dfrac{1}{2}bc\sin A

Now, since sin A \sin A is constant, for the maximum area, b × c b\times c should be maximum

and according to A M G M AM\geq GM , the maximum value of b × c b\times c can be obtained when b + c b+c is maximum.

In the circle we find the maximum value of b + c b+c is when the triangle is isosceles.

So, in the triangle C = B \angle C=\angle B and according to the sum angle property -

A + B + C = π \angle A+\angle B+\angle C=\pi

19 π 2018 + 2 B = π \Rightarrow \dfrac{19\pi}{2018} + 2\angle B=\pi

B = 1999 π 4036 > A = 19 π 2018 \Rightarrow \angle B=\dfrac{1999\pi}{4036} >\angle A=\dfrac{19\pi}{2018}

Therefore the largest angle is 1999 2 π 2018 \dfrac{1999}{2}\cdot\dfrac{\pi}{2018}

So P = 1999 P=1999 and Q = 2 Q=2

P + 10 Q 1 = 2018 \Rightarrow P+10Q-1=\boxed{2018}

Nice solution, I haven't thought about it.

Guillermo Templado - 3 years, 3 months ago
David Vreken
Feb 16, 2018

Let C = x \angle C = x .

Then B = π x 19 π 2018 \angle B = \pi - x - \frac{19\pi}{2018} , and by the law of sines, b = 2018 sin ( 19 π 2018 ) sin ( π x 19 π 2018 ) b = \frac{2018}{\sin (\frac{19 \pi}{2018})} \sin (\pi - x - \frac{19\pi}{2018}) .

The area A A of the triangle is A = 1 2 a b sin C = 201 8 2 2 sin ( 19 π 2018 ) sin ( π x 19 π 2018 ) sin x = 201 8 2 2 sin ( 19 π 2018 ) sin ( x + 19 π 2018 ) sin x A = \frac{1}{2}ab \sin C = \frac{2018^2}{2\sin (\frac{19 \pi}{2018})} \sin (\pi - x - \frac{19\pi}{2018}) \sin x = \frac{2018^2}{2\sin (\frac{19 \pi}{2018})} \sin (x + \frac{19\pi}{2018}) \sin x .

This means A = 201 8 2 2 sin ( 19 π 2018 ) ( sin ( x + 19 π 2018 cos x ) + sin x cos ( x + 19 π 2018 ) ) = 201 8 2 2 sin ( 19 π 2018 ) sin ( 2 x + 19 π 2018 ) A' = \frac{2018^2}{2\sin (\frac{19 \pi}{2018})}(\sin(x + \frac{19 \pi}{2018} \cos x) + \sin x \cos (x + \frac{19 \pi}{2018})) = \frac{2018^2}{2\sin (\frac{19 \pi}{2018})}\sin(2x + \frac{19 \pi}{2018}) and A = 201 8 2 sin ( 19 π 2018 ) cos ( 2 x + 19 π 2018 ) A'' = \frac{2018^2}{\sin (\frac{19 \pi}{2018})}\cos(2x + \frac{19 \pi}{2018}) .

The largest area is when A = 0 A' = 0 and A < 0 A'' < 0 , which in the context of this problem means 2 x + 19 π 2018 = π 2x + \frac{19 \pi}{2018} = \pi , and so x = 1999 2 π 2018 x = \frac{1999}{2}\frac{\pi}{2018} .

This makes P = 1999 P = 1999 , Q = 2 Q = 2 , and P + 10 Q 1 = 2018 P + 10Q - 1 = \boxed{2018} .

Yes,correct, I did it like this, but you have to make sure that A < 0 A'' < 0 and in the penultimate line 2 x + 19 π 2018 = π 2x + \frac{19 \pi}{2018} = \pi .

Guillermo Templado - 3 years, 3 months ago

Log in to reply

Thank you! I edited my solution.

David Vreken - 3 years, 3 months ago
Chew-Seong Cheong
Feb 15, 2018

The area of the triangle is given by:

A = 1 2 a b sin C By sine rule: a sin A = b sin B = a 2 sin B sin C 2 sin A Note that B = π A C = a 2 sin ( π A C ) sin C 2 sin A that sin ( π θ ) = sin θ = a 2 sin ( A + C ) sin C 2 sin A and that sin α sin β = 1 2 ( cos ( α β ) cos ( α + β ) ) = a 2 ( cos A cos ( A + 2 C ) ) 4 sin A \begin{aligned} A_\triangle & = \frac 12 a{\color{#3D99F6}b} \sin C & \small \color{#3D99F6} \text{By sine rule: } \frac a{\sin A} = \frac b{\sin B} \\ & = \frac {a^2 {\color{#3D99F6}\sin B} \sin C}{2\sin A} & \small \color{#3D99F6} \text{Note that } B = \pi - A - C \\ & = \frac {a^2 {\color{#3D99F6}\sin (\pi - A - C)} \sin C}{2\sin A} & \small \color{#3D99F6} \text{that } \sin (\pi - \theta) = \sin \theta \\ & = \frac {a^2 {\color{#3D99F6}\sin (A + C)} \sin C}{2\sin A} & \small \color{#3D99F6} \text{and that } \sin \alpha \sin \beta = \frac 12 (\cos (\alpha - \beta) - \cos (\alpha + \beta)) \\ & = \frac {a^2 (\cos A - \cos (A+2C))}{4\sin A} \end{aligned}

We note that A A_\triangle is maximum, when cos ( A + 2 C ) = 1 \cos (A+2C) = -1 or A + 2 C = π A+2C = \pi , C = π 2 19 π 4036 = 1999 π 4036 \implies C = \pi 2 - \dfrac {19\pi}{4036} = \dfrac {1999 \pi}{4036} . From B = π A C = 1999 π 4036 B= \pi - A - C = \dfrac {1999 \pi}{4036} . Therefore, B = C = 1999 π 4036 = 1999 2 π 2018 B=C= \dfrac {1999 \pi}{4036} = \frac {1999}2 \cdot \dfrac \pi{2018} is the largest angle. And P + 10 Q 1 = 2018 P+10Q-1 = \boxed{2018} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...