Fun With Binomial Coefficients 2

The Remainder when

( k = 1 5 C 2 k 1 20 ) 6 { \left( \sum _{ k=1 }^{ 5 }{ \overset { 20 }{ \underset { 2k-1 }{ C } } } \right) }^{ 6 }

is Divided by 11 is γ \gamma . Then Find

5 csc π 2 γ 5\csc { \frac { \pi }{ 2\gamma } } .

Where C r n \overset { n }{ \underset { r }{ C } } represents Binomial Coefficients..


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Nov 21, 2014

Let Z = ( k = 1 5 ( 20 2 k 1 ) ) 6 \displaystyle Z = \left ( \sum_{k=1}^5 {20 \choose 2k-1} \right )^6 , then cosider modulo 11 11

Use a few properties of Pascal Triangle, we get

Z ( ( 20 1 ) + ( 20 3 ) + ( 20 5 ) + ( 20 7 ) + ( 20 9 ) ) 6 ( 1 2 ( ( 20 1 ) + ( 20 3 ) + ( 20 5 ) + ( 20 7 ) + ( 20 9 ) + ( 20 11 ) + ( 20 13 ) + ( 20 15 ) + ( 20 17 ) + ( 20 19 ) ) ) 6 2 ( 20 2 ) × 6 , Use Fermat’s Little Theorem 2 8 3 \begin{aligned} Z & \equiv & \left ( {20 \choose 1} + {20 \choose 3 } + {20 \choose 5 } + {20 \choose 7 } + {20 \choose 9 } \right )^6 \\ & \equiv & \left ( \frac {1}{2} \cdot \left ( {20 \choose 1} + {20 \choose 3 } + {20 \choose 5 } + {20 \choose 7 } + {20 \choose 9 } + {20 \choose 11} + {20 \choose 13 } + {20 \choose 15 } + {20 \choose 17 } + {20 \choose 19 } \right ) \right )^6 \\ & \equiv & 2^{(20-2) \times 6}, \text{Use Fermat's Little Theorem} \\ & \equiv & 2^{8} \\ & \equiv & 3 \\ \end{aligned}

So γ = 3 \gamma = 3 which yields the desired answer of 10 \boxed{10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...