Fun With Calculus 1

Calculus Level 3

Tangents to the curve y = 1 + 3 x 2 3 + x 2 \large y=\dfrac{1+3 x^2}{3+x^2} drawn at the points for which y = 1 y=1 intersect at ( a , b ) (a,b) . Find the value of ( a + b ) {(a+b)} .


Try my fun series .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

y = 1 + 3 x 2 3 + x 2 = 3 8 3 + x 2 y = \dfrac{1+3x^{2}}{3+x^{2}} = 3 - \dfrac{8}{3+x^{2}}
Substituting y = 1, we get x = ± 1 x = \pm 1
Differentiating,
d y d x = 16 x ( 3 + x 2 ) 2 \dfrac{dy}{dx} = \dfrac{16x}{(3+x^{2})^{2}}
y 1 = 1 ( x + 1 ) y = x y-1=-1(x+1) \to y = -x
The point ( a , b ) (a,b) lines on y = x y = -x
a + b = 0 \therefore a+b = 0
This can be confirmed as the equation of other tangent is y = x y = x .
And the intersection is ( 0 , 0 ) (0,0)


Awesome. !

Anurag Pandey - 4 years, 10 months ago
Amritaansh Narain
Jun 25, 2019

It is an even function thus for y=q solution is both 1, -1. It can be proved that tangents at these any two such point on an even function intersect.

y = 1 + 3 x 2 3 + x 2 i f y = 1 , 3 + x 2 = 1 + 3 x 2 . S o 2 = 2 x 2 . x = ± 1. a n d t a n g e n t s a r e f r o m ( 1 , 1 ) a n d ( 1 , 1 ) . S l o p e o f t a n g e n t s t o y = 1 + 3 x 2 3 + x 2 , i s y = 6 x ( 3 + x 2 ) ( 1 + 3 x 2 ) 2 x ( 1 + 3 x 2 ) 2 = 16 x 9 x 4 + 6 x 2 + 1 . m x = 1 = 16 9 + 6 + 1 = 1. a n d m x = 1 = 16 9 + 6 + 1 = 1. S o t h e t w o t a n g e n t s a r e y = 1 ( x 1 ) + 1 = x , a n d y = 1 ( x + 1 ) + 1 = x . T h e s e a r e t w o l i n e s F R O M ( 0 , 0 ) a t 4 5 o a n d 13 5 0 . T h a t i s ( a , b ) = ( 0 , 0 ) . a + b = 0 + 0 = 0. y=\dfrac{1+3x^2}{3+x^2}~\implies~if~y=1,~3+x^2=1+3x^2.~~So~2=2x^2.\\ \therefore~x = \pm 1.~~~and~~tangents~are~from~(1,1)~and~(-1,1).\\ Slope~of~tangents~to~y=\dfrac{1+3x^2}{3+x^2},~~is\\ y '=\dfrac{6x(3+x^2) - (1+3x^2)*2x}{(1+3x^2)^2}=\dfrac{16x}{9x^4+6x^2+1}.\\ \therefore~m_{x=1}=\dfrac{16}{9+6+1}=1.~~and~~m_{x=-1}=\dfrac{ - 16}{9+6+1}= - 1.\\ So~the~two~tangents~are~~~~y=1*(x-1)+1=x,~~~and~~y=-1(x+1)+1= - x.\\ These~are~two~lines~FROM~(0,0)~at~45^o~~and~~135^0. That~is~(a,b)=(0,0).\\ a+b=0+0=0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...