Fun with Cyclic

Algebra Level 5

Let f ( a , b , c ) = f(a,b,c)= ( a + b + c ) ( c y c a + b + c + a b + c ) (\sqrt{a+b+c})(\sum_{cyc}\frac{\sqrt{a+b+c}+\sqrt{a}}{b+c})

Find the minimum value of f ( a , b , c ) f(a,b,c) upto 3 3 decimal places, as a , b , c a,b,c varies over all positive reals.


The answer is 7.098.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Souryajit Roy
Sep 28, 2014

Without loss of generality,one may assume a + b + c = 1 a+b+c=1 .

So, now we have to find the minimum value of f ( a , b , c ) = c y c 1 + a 1 a f(a,b,c)=\sum_{cyc}\frac{1+\sqrt{a}}{1-a} .

By AM-HM inequality, c y c ( 1 a ) 3 3 c y c 1 1 a \frac{\sum_{cyc}(1-a)}{3}≥\frac{3}{\sum_{cyc}\frac{1}{1-a}}

or, c y c 1 1 a 9 c y c ( 1 a ) = 9 3 ( a + b + c ) = 9 2 \sum_{cyc}\frac{1}{1-a}≥\frac{9}{\sum_{cyc}(1-a)}=\frac{9}{3-(a+b+c)}=\frac{9}{2}

Now let a = x , b = y , c = z \sqrt{a}=x,\sqrt{b}=y,\sqrt{c}=z . Hence, x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1

Let g ( x , y ) = c y c x 1 x 2 g(x,y)=\sum_{cyc}\frac{x}{1-x^2} .Now we have to minimize this.

( y + z ) 2 2 ( y 2 + z 2 ) = 2 ( 1 x 2 ) (y+z)^2≥2(y^2+z^2)=2(1-x^2)

or, x 1 x 2 2 x ( y + z ) 2 \frac{x}{1-x^2}≥2\frac{x}{(y+z)^2}

So, ( x + y + z ) g ( x , y ) 2 ( x + y + z ) ( c y c x ( y + z ) 2 ) (x+y+z)g(x,y)≥2(x+y+z)(\sum_{cyc}\frac{x}{(y+z)^2}) 2 ( c y c x y + z ) 2 ≥2(\sum_{cyc}\frac{x}{y+z})^2 2 ( 3 2 ) 2 = 9 2 ≥2(\frac{3}{2})^2=\frac{9}{2} (By Nesbitt's Inequality)

By AM-RMS inequality,

x + y + z 3 x 2 + y 2 + z 2 3 = 3 3 x+y+z≤3\sqrt{\frac{x^2+y^2+z^2}{3}}=\frac{3}{\sqrt{3}}

or, 1 x + y + z 3 3 \frac{1}{x+y+z}≥\frac{\sqrt{3}}{3}

Hence, g ( x . y ) 3 3 2 g(x.y)≥\frac{3\sqrt{3}}{2}

Therefore, f ( a , b , c ) 9 + 3 3 2 = 7.098 f(a,b,c)≥\frac{9+3\sqrt{3}}{2}=7.098

Put a=b=c=1 Instead

Krishna Sharma - 6 years, 8 months ago

@Souryajit Roy Aren't we losing generality by assuming a + b + c = 1 a+b+c=1 ? I'm new to it, please explain. Thanks.

Satvik Golechha - 6 years, 8 months ago

Log in to reply

I am also doubtful.

Krishna Ar - 6 years, 8 months ago

Here's the explanation , why I assumed a + b + c = 1 a+b+c=1 . The trick is called Homogenization.

Let s = a + b + c s=a+b+c and p = a / s p=a/s , q = b / s q=b/s and r = c / s r=c/s .

Let the minimum value be k ( k is constant)

Then the given inequality can be rewritten as

c y c s + a b + c k s \sum_{cyc}\frac{\sqrt{s}+\sqrt{a}}{b+c}≥\frac{k}{\sqrt{s}}

On multiplying by s \sqrt{s}

c y c s + s a b + c k \sum_{cyc}\frac{s+\sqrt{sa}}{b+c}≥k

Finally, dividing the numerator and the denominator on the left by s s

c y c 1 + p q + r k \sum_{cyc}\frac{1+\sqrt{p}}{q+r}≥k where p + q + r = a / s + b / s + c / s = 1 p+q+r=a/s+b/s+c/s=1 .

Souryajit Roy - 6 years, 8 months ago

We can easily solve using Jensen's Inequality from line 2 of your solution

Mohammed Imran - 1 year, 2 months ago

It is a reallly easy solution

Mohammed Imran - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...