Fun with Fibonacci

Algebra Level 3

Let F n F_{n} be an infinite sequence, in which F 1 = F 2 = 1 F_{1} = F_{2} = 1 , and satisfies the recurrence relation F n = F n 1 + F n 2 F_{n} = F_{n-1} + F_{n - 2} , for positive integers n 3 n \geq 3 .

Let S S be an infinte series in which S S is defined as

n = 1 F n 2 n \Large\displaystyle\sum_{n = 1}^{\infty} \frac{F_{n}}{2^{n}}

Calculate the value of S S

This problem appeared in the AITMO 2013


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Karen Vardanyan
Jun 8, 2014

In order to find this sum let's consider this: F n + 3 2 n \frac { { F }_{ n+3 } }{ { 2 }^{ n } } .

If we try to find the difference of it, we'll get

Δ ( F n + 3 2 n ) = F n + 3 2 n F n + 2 2 n 1 = 1 2 n ( F n + 3 2 F n + 2 ) = 1 2 n ( F n + 1 F n + 2 ) = F n 2 n \Delta (\frac { { F }_{ n+3 } }{ { 2 }^{ n } } )=\frac { { F }_{ n+3 } }{ { 2 }^{ n } } -\frac { { F }_{ n+2 } }{ { 2 }^{ n-1 } } =\frac { 1 }{ { 2 }^{ n } } ({ F }_{ n+3 }-2{ F }_{ n+2 })=\frac { 1 }{ { 2 }^{ n } } ({ F }_{ n+1 }-{ F }_{ n+2 })=-\frac { { F }_{ n } }{ { 2 }^{ n } } .

It means that

F n 2 n = Δ ( F n + 3 2 n ) \frac { { F }_{ n } }{ { 2 }^{ n } } =-\Delta (\frac { { F }_{ n+3 } }{ { 2 }^{ n } } )

And so

F n 2 n = F n + 3 2 n + C \sum { \frac { { F }_{ n } }{ { 2 }^{ n } } } =-\frac { { F }_{ n+3 } }{ { 2 }^{ n } } +C .

Quite easily we can check (placing n = 1 n=1 ) that C = 2 C=2 , which means that

F n 2 n = 2 F n + 3 2 n \sum { \frac { { F }_{ n } }{ { 2 }^{ n } } } =2-\frac { { F }_{ n+3 } }{ { 2 }^{ n } } .

And because l i m n F n + 3 2 n = 0 { lim }_{ n\rightarrow \infty }\frac { { F }_{ n+3 } }{ { 2 }^{ n } } =0 ,

n = 1 F n 2 n = 2 \sum _{ n=1 }^{ \infty }{ \frac { { F }_{ n } }{ { 2 }^{ n } } } =2

Arsalan Iqbal
May 31, 2014

S = n = 1 F n 2 n ( 1 ) \because S=\sum _{ n=1 }^{ \infty }{ \frac { { F }_{ n } }{ { 2 }^{ n } } }\ ------(1) We have, F 1 F_1 = F 2 F_2 = 1 1

F o r F 3 \underline { For\ F_3 } : F n = F n 1 + F n 2 \because { F }_{ n }={ F }_{ n-1 }+{ F }_{ n-2 } F 3 = F 3 1 + F 3 2 \Rightarrow { F }_{ 3 }={ F }_{ 3-1 }+{ F }_{ 3-2 } F 3 = F 2 + F 1 \Rightarrow { F }_{ 3 }={ F }_{ 2 }+{ F }_{ 1 } F 3 = 1 + 1 \Rightarrow { F }_{ 3 }=1+1 F 3 = 2 \therefore { F }_{ 3 }=2 Similarly: F 4 = 3 { F }_{ 4 }=3 F 5 = 5 { F }_{ 5 }=5 F 6 = 8 { F }_{ 6 }=8 . . . . . . . . . \infty. Now, by putting on the above F s F's in equation (1) , we get: S = n = 1 F n 2 n = 1 2 + 1 4 + 1 4 + 3 16 + 5 32 + 1 8 + . . . . . . . S=\sum _{ n=1 }^{ \infty }{ \frac { { F }_{ n } }{ { 2 }^{ n } } }=\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 4 } +\frac { 3 }{ 16 } +\frac { 5 }{ 32 } +\frac { 1 }{ 8 } +.......\infty Let's try adding up the first few terms and see what happens. If we add up the first two terms, we get: 1 2 + 1 4 = 3 4 \frac { 1 }{ 2 } +\frac { 1 }{ 4 } =\frac { 3 }{ 4 } The sum of the first three terms is: 1 2 + 1 4 + 1 4 = 1 \frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 4 } =1 The sum of the first four terms is: 1 2 + 1 4 + 1 4 + 3 16 = 19 16 \frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 4 } +\frac { 3 }{ 16 } =\frac { 19 }{ 16 } And so on. If we write down the partial sums together, i.e. ( 1 2 , 3 4 , 1 , 19 16 , 43 32 , . . . . . ) (\frac { 1 }{ 2 } ,\frac { 3 }{ 4 } ,1,\frac { 19 }{ 16 } ,\frac { 43 }{ 32 } ,.....) we can see that the partial sums here form a sequence that has limit 2 2 . S = n = 1 F n 2 n = 2 \therefore \boxed { S=\sum _{ n=1 }^{ \infty }{ \frac { { F }_{ n } }{ { 2 }^{ n } } }\ =2 }

Sharky Kesa
May 31, 2014

This problem is exactly like this one. A Fibonacci Sum

Oh... Extremely sorry.

Log in to reply

It's okay bro. I hadn't seen the other one. :D

Finn Hulse - 7 years ago
Abhishek Sinha
Jun 18, 2014

Define a n = F n 2 n a_n=\frac{F_n}{2^n} . Then utilizing the properties of Fibonacci number, we readily have for a n = 1 2 a n 1 + 1 4 a n 2 , n 3 a_n=\frac{1}{2}a_{n-1}+\frac{1}{4}a_{n-2}, n\geq 3 . Sum both sides up to infinity and let the required limit be S S (which can be argued to be finite). We have, S ( a 1 + a 2 ) = 1 2 ( S a 1 ) + 1 4 S S-(a_1+a_2)=\frac{1}{2}(S-a_1)+\frac{1}{4}S . Solving for S S , we get S = 2 S=2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...