Fun with inequalities-1

Algebra Level 5

For what real a a , do the roots of the equation x 2 2 x a 2 + 1 = 0 { x }^{ 2 }-2x-{ a }^{ 2 }+1=0 lie between the roots of the equation x 2 2 ( a + 1 ) x + a ( a 1 ) = 0 { x }^{ 2 }-2(a+1)x+a(a-1)=0 ?

a ( 1 4 , 1 ) a\in \left(-\frac { 1 }{ 4 } ,1 \right) a ( 1 4 , 1 ) ( , 3 ) a\in \left( -\frac {1 }{ 4 } ,1\right)\cup (-\infty ,-3) a ( 1 3 , 1 4 ) ( 1 , ) a\in \left(-\frac { 1 }{ 3 } ,-\frac { 1 }{ 4 } \right)\cup (1,\infty ) a ( 1 3 , 1 4 ) a\in \left(-\frac { 1 }{ 3 } ,-\frac { 1 }{ 4 } \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let α < β \alpha < \beta be the roots of x 2 2 x a 2 + 1 = 0 x^2-2x-a^2+1 = 0 and γ < δ \gamma < \delta those of x 2 2 ( a + 1 ) x + a ( a 1 ) = 0 x^2-2(a+1)x+a(a-1)=0 . Then we have γ < α < β < δ \gamma < \alpha < \beta < \delta .

{ α = 2 4 + 4 a 2 4 2 = 1 a β = 1 + a \begin{cases} \alpha = \dfrac {2-\sqrt{4+4a^2-4}}{2} = 1-a \\ \beta = 1+a\end{cases}

{ γ = 2 ( a + 1 ) 4 ( a + 1 ) 2 4 a ( a 1 ) 2 = 1 + a 3 a + 1 δ = 1 + a + 3 a + 1 \begin{cases} \gamma = \dfrac {2(a+1)-\sqrt{4(a+1)^2-4a(a-1)}}{2} = 1+a - \sqrt{3a+1} \\ \delta = 1+a + \sqrt{3a+1} \end{cases}

{ 1 + a 3 a + 1 < 1 a 2 a < 3 a + 1 4 a 2 3 a 1 < 0 ( 4 a + 1 ) ( a 1 ) < 0 x ( 1 4 , 1 ) 1 + a + 3 a + 1 > 1 + a 3 a + 1 > 0 a ( , 1 3 ) \begin{cases} 1+a - \sqrt{3a+1} < 1-a & \Rightarrow 2a < \sqrt{3a+1} \\ & \quad 4a^2-3a-1 < 0 \\ & \quad (4a+1)(a-1) < 0 \\ & \quad x \in \left(-\frac{1}{4}, 1 \right) \\ 1+a + \sqrt{3a+1} > 1+ a & \Rightarrow \sqrt{3a+1} > 0 \\ & \quad a \in \left(-\infty, -\frac{1}{3} \right) \end{cases}

Therefore, the answer is x ( 1 4 , 1 ) \boxed{x \in \left(-\frac{1}{4}, 1 \right)}

Maninder Dhanauta
Mar 23, 2016

This is my solution:

x 2 2 x a 2 + 1 = 0 x^2-2x-a^2+1=0 ...1

x 2 2 ( a + 1 ) x + a ( a 1 ) = 0 x^2-2(a+1)x+a(a-1)=0 ...2

Doing a process called completing the square for equation 1 :

( x 1 ) 2 a 2 = 0 (x-1)^2-a^2=0

Solving for x:

x = a ± 1 x=a \pm 1

Completing the square for 2:

( x ( a + 1 ) ) 2 3 a 1 = 0 (x-(a+1))^2 - 3a - 1 = 0

Now subbing x = a ± 1 x= a\pm 1 into ( x ( a + 1 ) ) 2 3 a 1 (x-(a+1))^2 - 3a - 1 :

( 1 ± 1 a 1 ) 2 3 a 1 (1 \pm 1-a-1)^2-3a-1

This has to be < 0 < 0 because of the nature of a parabola. **

1 ± 1 a 1 ) 2 3 a 1 < 0 1 \pm 1-a-1)^2-3a-1 <0

a 2 ( ± 1 1 ) 2 3 a 1 < 0 a^2(\pm 1 -1)^2 -3a-1<0

there are 2 conditions to be met:

a 2 ( 1 1 ) 2 3 a 1 < 0 a^2(1 -1)^2 -3a-1<0

3 a < 1 -3a<1

a > 1 / 3 \boxed {a>-1/3}

a 2 ( 1 1 ) 2 3 a 1 < 0 a^2(-1 -1)^2 -3a-1<0

4 a 2 3 a 1 < 0 4a^2 -3a-1<0

( a 1 ) ( 4 a + 1 ) < 0 (a-1)(4a+1) <0

1 / 4 < a < 1 \boxed {-1/4 <a<1}

Therefore : 1 / 4 < a < 1 \boxed {-1/4 <a<1}

**(note: If you are interested on why it is <0 draw a parabola opening upwards that has 2 roots choose a point between them and evaluate the parabola at that point)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...