lo g 3 x 2 + ∣ x − 5 ∣ ∣ ∣ x 2 − 4 x ∣ ∣ + 3 ≥ 0
Solve the following for x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
That's a very nice solution sir. Exactly how I did it.
I like your solution, but could you elaborate more on how you knew to evaluate for x< 0 , 0<x<4, and 4<x<5 and x>5 ?
That was the information I was missing to solve the problem. Good explanation :)
Log in to reply
These are the values of x where discontinuity starts due to the absolute value function ∣ ∣ . You can see that in the graph. The values come from ∣ x 2 − 4 x ∣ for x < 0 , 0 ≤ x < 4 and ∣ x − 5 ∣ for 4 ≤ x < 5 , x ≥ 5 . For ease of calculation, we need to replace the original equation with ∣ ∣ to one without at these values of x .
For example,
∣ x − 5 ∣ = { x − 5 for x ≥ 5 e.g. : ∣ 5 . 5 − 5 ∣ = 5 . 5 − 5 = 0 . 5 5 − x for x < 5 e.g. : ∣ 5 − 4 . 5 ∣ = 5 − 4 . 5 = 0 . 5
Problem Loading...
Note Loading...
Set Loading...
For lo g 3 x 2 + ∣ x − 5 ∣ ∣ x 2 − 4 x ∣ + 3 ≥ 0 ⇒ x 2 + ∣ x − 5 ∣ ∣ x 2 − 4 x ∣ + 3 ≥ 1
⇒ x 2 + ∣ x − 5 ∣ − ∣ x 2 − 4 x ∣ − 3 ≤ 0
For x < 0 :
⇒ x 2 − x + 5 − x 2 + 4 x − 3 = 3 x + 2 ≤ 0 ⇒ x ∈ ( − ∞ , − 3 2 ]
For 0 ≤ x < 4 :
⇒ x 2 − x + 5 + x 2 − 4 x − 3 = 2 x 2 − 5 x + 2 ≤ 0 ⇒ ( 2 x − 1 ) ( x − 2 ) ≤ 0 ⇒ x ∈ [ 2 1 , 2 ]
For 4 ≤ x < 5 : ⇒ x 2 − x + 5 − x 2 + 4 x − 3 = 3 x + 2 > 0
⇒ x 2 + ∣ x − 5 ∣ ∣ x 2 − 4 x ∣ + 3 < 1
For x ≥ 5 : ⇒ x 2 + x − 5 − x 2 + 4 x − 3 = 5 x − 8 > 0
⇒ x 2 + ∣ x − 5 ∣ ∣ x 2 − 4 x ∣ + 3 < 1
Therefore, lo g 3 x 2 + ∣ x − 5 ∣ ∣ x 2 − 4 x ∣ + 3 ≥ 0 when x ∈ ( − ∞ , − 3 2 ] ∪ [ 2 1 , 2 ]
A plot of lo g 3 x 2 + ∣ x − 5 ∣ ∣ x 2 − 4 x ∣ + 3 clearly show the answer.