Fun with Loci II

Geometry Level pending

A point P ( x , y ) P(x, y) moves in such a way that its distance from the point A ( 3 , 1 ) A(3, 1) is always three times its distance from the straight line x = 1 x = -1 . Find the equation of the locus of the moving point P P .

8 x 2 y 2 + 24 x 2 y 1 = 0 8x^2-y^2+24x-2y-1=0 8 x 2 y 2 + 24 x + 2 y + 1 = 0 8x^2-y^2+24x+2y+1=0 8 x 2 + 9 y 2 56 x + 18 y 89 = 0 8x^2+9y^2-56x+18y-89=0 8 x 2 + 9 y 2 56 x 18 y 89 = 0 8x^2+9y^2-56x-18y-89=0 8 x 2 + 9 y 2 + 56 x + 18 y + 89 = 0 8x^2+9y^2+56x+18y+89=0 8 x 2 + 9 y 2 56 x 18 y + 89 = 0 8x^2+9y^2-56x-18y+89=0 8 x 2 y 2 24 x 2 y 1 = 0 8x^2-y^2-24x-2y-1=0 8 x 2 y 2 + 24 x + 2 y 1 = 0 8x^2-y^2+24x+2y-1=0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Jul 19, 2019

( x 3 ) 2 + ( y 1 ) 2 = 3 ( x + 1 ) ( x 3 ) 2 + ( y 1 ) 2 = 9 ( x + 1 ) 2 after some manipulation 8 x 2 y 2 + 24 x + 2 y 1 = 0 \sqrt{(x-3)^2 + (y-1)^2} = 3(x+1) \\ (x-3)^2 + (y-1)^2 = 9(x+1)^2 \\ \text{after some manipulation} \\ 8x^2 - y^2 + 24x + 2y - 1 = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...