Fun with Maths

Algebra Level 4

If the roots of 10 x 3 c x 2 54 x 27 = 0 10x^3- cx^2-54x-27=0 are in harmonic progression then find c c .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepak Kumar
Jan 10, 2016

Hint: Use the fact that polynomial equation formed by replacing x with 1/x i.e x-->1/x will have roots in AP.From there it easy considering roots as
a-d,a,a+d then applying vieta to get 'a' (which is a root of the polynomial obtained after transformation and must satistisy it)

I did it by using a different approach but this is the best method ! :)

Prakhar Bindal - 5 years, 4 months ago
Chew-Seong Cheong
Jan 24, 2016

Let the roots be 1 a \dfrac{1}{a} , 1 a + d \dfrac{1}{a+d} and 1 a + 2 d \dfrac{1}{a+2d} , then by Vieta's formulas:

{ 1 a + 1 a + d + 1 a + 2 d = c 10 . . . ( 1 ) 1 a ( a + d ) + 1 ( a + d ) ( a + 2 d ) + 1 a ( a + 2 d ) = 27 5 . . . ( 2 ) 1 a ( a + d ) ( a + 2 d ) = 27 10 . . . ( 3 ) \begin{cases} \dfrac{1}{a} + \dfrac{1}{a+d} + \dfrac{1}{a+2d} = \dfrac{c}{10} & ...(1) \\ \dfrac{1}{a(a+d)} + \dfrac{1}{(a+d)(a+2d)} + \dfrac{1}{a(a+2d)} = - \dfrac{27}{5} & ...(2) \\ \color{#3D99F6}{\dfrac{1}{a(a+d)(a+2d)} = \dfrac{27}{10}} & \color{#3D99F6}{...(3)} \end{cases}

( 2 ) : 1 a ( a + d ) + 1 ( a + d ) ( a + 2 d ) + 1 a ( a + 2 d ) = 27 5 a + 2 d + a + a + d a ( a + d ) ( a + 2 d ) = 27 5 3 ( a + d ) a ( a + d ) ( a + 2 d ) = 27 5 3 ( a + d ) ( 27 10 ) = 27 5 a + d = 2 3 \begin{aligned} (2): \quad \dfrac{1}{a(a+d)} + \dfrac{1}{(a+d)(a+2d)} + \dfrac{1}{a(a+2d)} & = - \dfrac{27}{5} \\ \Rightarrow \frac{a+2d+a+a+d}{\color{#3D99F6}{a(a+d)(a+2d)}} & = - \frac{27}{5} \\ \dfrac{3(a+d)}{\color{#3D99F6}{a(a+d)(a+2d)}} & = - \dfrac{27}{5} \\ 3(a+d)\left(\color{#3D99F6}{\frac{27}{10}}\right) & = - \frac{27}{5} \\ \Rightarrow \color{#D61F06}{a+d} & \color{#D61F06}{= - \frac{2}{3}} \end{aligned}

( 3 ) : 1 a ( a + d ) ( a + 2 d ) = 27 10 a ( a + d ) ( a + 2 d ) = 10 27 a ( 2 3 ) ( a + 2 d ) = 10 27 a ( a + 2 d ) = 5 9 \begin{aligned} (3): \quad \frac{1}{a(a+d)(a+2d)} & = \frac{27}{10} \\ a(\color{#D61F06}{a+d})(a+2d) & = \frac{10}{27} \\ a\left(\color{#D61F06}{- \frac{2}{3}}\right)(a+2d) & = \frac{10}{27} \\ \Rightarrow \color{#20A900}{a(a+2d)} & \color{#20A900}{= - \frac{5}{9}} \end{aligned}

( 1 ) : 1 a + 1 a + d + 1 a + 2 d = c 10 ( a + d ) ( a + 2 d ) + a ( a + 2 d ) + a ( a + d ) a ( a + d ) ( a + 2 d ) = c 10 ( a + d ) ( a + 2 d + a ) + a ( a + 2 d ) a ( a + d ) ( a + 2 d ) = c 10 2 ( a + d ) 2 + a ( a + 2 d ) a ( a + d ) ( a + 2 d ) = c 10 [ 2 ( 2 3 ) 2 5 9 ] ( 27 10 ) = c 10 [ 8 9 5 9 ] ( 27 10 ) = c 10 1 3 ˙ ( 27 10 ) = c 10 c = 9 \begin{aligned} (1): \quad \quad \quad \quad \quad \quad \quad \quad \frac{1}{a} + \frac{1}{a+d} + \frac{1}{a+2d} & = \frac{c}{10} \\ \frac{(a+d)(a+2d)+a(a+2d)+a(a+d)}{\color{#3D99F6}{a(a+d)(a+2d)}} & = \frac{c}{10} \\ \frac{(a+d)(a+2d+a)+a(a+2d)}{\color{#3D99F6}{a(a+d)(a+2d)}} & = \frac{c}{10} \\ \frac{2(\color{#D61F06}{a+d})^2+\color{#20A900}{a(a+2d)}}{\color{#3D99F6}{a(a+d)(a+2d)}} & = \frac{c}{10} \\ \left[ 2\left(\color{#D61F06}{ - \frac{2}{3}} \right)^2 \color{#20A900}{- \frac{5}{9}} \right]\left(\color{#3D99F6}{\frac{27}{10}}\right) & = \frac{c}{10} \\ \left[ \frac{8}{9} - \frac{5}{9} \right]\left(\color{#3D99F6}{\frac{27}{10}}\right) & = \frac{c}{10} \\ \frac{1}{3} \dot{} \left(\color{#3D99F6}{\frac{27}{10}}\right) & = \frac{c}{10} \\ \Rightarrow c & = \boxed{9} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...