Fun with numbers

Let ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , , ( x n , y n ) (x_{1},y_{1}), (x_{2},y_{2}), (x_{3},y_{3}),\ldots, (x_{n},y_{n}) be the ordered pairs of integers that satisfy the equation x 3 + y 3 = ( x + y ) 2 x^{3} + y^{3} = (x+y)^{2} .

Express your answer as i = 1 n ( x i + y i ) \displaystyle\sum_{i=1}^n (x_{i} + y_{i}) .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kazem Sepehrinia
Jun 29, 2015

Note that x 3 + y 3 ( x + y ) 2 = ( x + y ) ( x 2 ( y + 1 ) x + y 2 y ) = 0 x^3+y^3-(x+y)^2=(x+y)(x^2-(y+1)x+y^2-y)=0 x + y = 0 x+y=0 gives infinite number of solutions in the form ( x , y ) = ( a , a ) (x,y)=(a, -a) . For getting integer solutions from x 2 ( y + 1 ) x + y 2 y = 0 x^2-(y+1)x+y^2-y=0 , which is a quadratic in terms of x x , discriminant of quadratic must be non-negative: Δ = 3 y 2 + 6 y + 1 0 y = 0 , 1 , 2 \Delta=-3y^2+6y+1 \ge 0 \\ y=0, 1, 2 Plugging the values of y y in the quadratic gives ( x , y ) = ( 0 , 0 ) , ( 1 , 0 ) , ( 0 , 1 ) , ( 2 , 1 ) , ( 1 , 2 ) , ( 2 , 2 ) (x,y)=(0, 0), (1, 0), (0, 1), (2, 1), (1, 2), (2, 2)

Nice Solution

Surya Prakash - 5 years, 11 months ago

Log in to reply

Nice problem, thanks :-)

Kazem Sepehrinia - 5 years, 11 months ago

Same way..

Dev Sharma - 5 years, 7 months ago
Edwin Gray
Apr 15, 2019

(0,0) is a solution. If x + y .ne. 0, we can divide both sided by x + y. Then x^2 - xy + y^2 = x + y, Writing as a quadratic in x, x^2 - (y + 1)x + y^2 - y = 0, with solution 2x = (y + 1) +/- sqrt(6y -3y^2 + 1). Letting D^2 = 6y - 3y^2 + 1, 3(y - 1)^2 + D^2 = 4. So y < 3.If y = 0, x = 1. If y = 1, x =0 or 2. If y = 2,x + 1 or 2. . So the ordered pairs are (0,0), (0,1), (1,0), (2,1), (1,2), (2,2). Adding all components, sum = 12. It can be shown that x or y cannot be <0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...