Fun with Ramanujan's number 1729.

Algebra Level 3

1 x 4 + 7 x 3 + 2 x 2 + 9 = 1729 \large \red 1x^4 + \red 7x^3 + \red 2x^2 + \red 9 = \red{1729}

If α \alpha , β \beta , γ \gamma , and δ \delta are the roots of the equation above, find the value of α 2 + β 2 + γ 2 + δ 2 \alpha^2 + \beta^2 + \gamma^2 + \delta^2 .


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 24, 2020

By Vieta's formula , we have α + β + γ + δ = 7 \alpha + \beta+\gamma+\delta = -7 and α β + α γ + α δ + β γ + β δ + γ δ = 2 \alpha\beta + \alpha \gamma + \alpha \delta + \beta\gamma+\beta \delta + \gamma\delta = 2 . Since

α 2 + β 2 + γ 2 + δ 2 = ( α + β + γ + δ ) 2 2 ( α β + α γ + α δ + β γ + β δ + γ δ ) = ( 7 ) 2 2 ( 2 ) = 45 \begin{aligned} \alpha^2 + \beta^2+\gamma^2+\delta^2 & = (\alpha + \beta+\gamma+\delta)^2 - 2(\alpha\beta + \alpha \gamma + \alpha \delta + \beta\gamma+\beta \delta + \gamma\delta) \\ & = (-7)^2 - 2(2) = \boxed{45} \end{aligned}

The given equation can be rewritten as x 4 + 7 x 3 + 2 x 2 1720 = 0 x^4+7x^3+2x^2-1720=0 . So α + β + γ + δ = 7 , α β + α γ + α δ + β γ + β δ + γ δ = 2 α+β+\gamma+\delta=-7, αβ+α\gamma+α\delta+β\gamma+β\delta+\gamma\delta=2 . Therefore α 2 + β 2 + γ 2 + δ 2 = ( α + β + γ + δ ) 2 2 ( α β + α γ + α δ + β γ + β δ + γ δ ) = ( 7 ) 2 2 × 2 = 49 4 = 45 α^2+β^2+\gamma^2+\delta^2=(α+β+\gamma+\delta) ^2-2(αβ+α\gamma+α\delta+β\gamma+β\delta+\gamma\delta)=(-7)^2-2\times 2=49-4=\boxed {45} . The equation can be generalized as 1 × x n + 7 × x n 1 + 2 × x n 2 + 9 = 1729 1\times x^n+7\times x^{n-1}+2\times x^{n-2}+9=1729 .

Naren Bhandari
Apr 24, 2020

If r 1 , r 2 , r 3 r_1, r_2,r_3 and r 4 r_4 are the roots of the equation then by multinomial theorem ( r 1 + r 2 + r 3 + r 4 ) 2 = r 1 + r 2 + r 3 + r 4 = 2 ( 2 k 1 , k 2 , k 3 , k 4 ) t = 1 4 r t k t = k 1 + k 4 = 2 n ! k 1 ! k 2 ! k 4 ! t = 1 4 r t k t = ( 2 2 , 0 , 0 , 0 ) r 1 2 + ( 2 1 , 1 , 0 , 0 ) r 1 r 2 + ( 2 0 , 2 , 0 , 0 ) r 2 2 + ( 2 0 , 0 , 0 , 2 ) r 4 2 + ( 2 1 , 0 , 1 , 0 ) r 1 r 3 + ( 2 0 , 1 , 1 , 0 ) r 2 r 3 + ( 2 0 , 0 , 1 , 1 ) r 3 r 4 + ( 2 0 , 0 , 2 , 0 ) r 3 2 + ( 2 1 , 0 , 0 , 1 ) r 1 r 4 + ( 2 0 , 0 , 2 , 0 ) r 3 2 (r_1+r_2+r_3+r_4)^2=\sum_{r_1+r_2+r_3+r_4=2} { 2 \choose k_1,k_2,k_3,k_4} \prod_{t=1}^{4} r_t^{k_t}=\sum_{k_1+\cdots k_4=2}\frac{n!}{k_1! k_2!\cdots k_4!}\prod_{t=1}^4r_t^{k_t} \\ ={ 2 \choose 2 ,0,0,0}r_1^{2}+{2 \choose 1,1,0,0} r_1 r_2 +{2\choose 0,2,0,0} r_2^2 + {2\choose 0,0,0,2} r_4^2 \\+{2\choose 1,0,1,0}r_1r_3+{2\choose 0,1,1,0} r_2r_3+{2\choose 0,0,1,1} r_3r_4+{2\choose 0,0,2,0}r_3^2\\+{2\choose 1,0,0,1}r_1r_4 +{2\choose 0,0,2,0}r_3^2 making the simplification of multinomial coefficients we obtain ( r 1 + r 2 + r 3 + r 4 ) 2 = r 1 2 + r 2 2 + r 3 2 + r 4 2 + 2 ( r 1 r 2 + r 1 r 3 + r 1 r 4 + r 2 r 3 + r 2 r 4 + r 3 r 4 ) r 1 2 + r 2 2 + r 3 2 + r 4 2 = ( k = 1 4 r k ) 2 2 1 i < j 4 r i r j = ( a 3 a 4 ) 2 2 ( a 2 a 4 ) = 7 2 4 = 45 (r_1+r_2+r_3+r_4)^2 = r_1^2+r_2^2+r_3^2+r_4^2 +2(r_1r_2+r_1r_3+r_1r_4+r_2r_3+r_2r_4+r_3r_4 )\\ \therefore r_1^2+r_2^2+r_3^2+r_4^2= \left(\sum_{k=1}^4 r_k\right)^2-2\sum_{1\leq i<j\leq 4} r_ir_j =\left(-\frac{a_3}{a_4}\right)^2-2\left( \frac{a_2}{a_4}\right)= 7^2-4=45 where a 4 = 1 , a 3 = 7 , a 2 = 2 , a 1 = 0 , a 0 = 1720 a_4=1,a_3=7,a_2=2,a_1=0,a_0=-1720 are the coefficients of the given quartic equation.

The next easy way to solve is using Newton-Girard formula

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...