1 x 4 + 7 x 3 + 2 x 2 + 9 = 1 7 2 9
If α , β , γ , and δ are the roots of the equation above, find the value of α 2 + β 2 + γ 2 + δ 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The given equation can be rewritten as x 4 + 7 x 3 + 2 x 2 − 1 7 2 0 = 0 . So α + β + γ + δ = − 7 , α β + α γ + α δ + β γ + β δ + γ δ = 2 . Therefore α 2 + β 2 + γ 2 + δ 2 = ( α + β + γ + δ ) 2 − 2 ( α β + α γ + α δ + β γ + β δ + γ δ ) = ( − 7 ) 2 − 2 × 2 = 4 9 − 4 = 4 5 . The equation can be generalized as 1 × x n + 7 × x n − 1 + 2 × x n − 2 + 9 = 1 7 2 9 .
If r 1 , r 2 , r 3 and r 4 are the roots of the equation then by multinomial theorem ( r 1 + r 2 + r 3 + r 4 ) 2 = r 1 + r 2 + r 3 + r 4 = 2 ∑ ( k 1 , k 2 , k 3 , k 4 2 ) t = 1 ∏ 4 r t k t = k 1 + ⋯ k 4 = 2 ∑ k 1 ! k 2 ! ⋯ k 4 ! n ! t = 1 ∏ 4 r t k t = ( 2 , 0 , 0 , 0 2 ) r 1 2 + ( 1 , 1 , 0 , 0 2 ) r 1 r 2 + ( 0 , 2 , 0 , 0 2 ) r 2 2 + ( 0 , 0 , 0 , 2 2 ) r 4 2 + ( 1 , 0 , 1 , 0 2 ) r 1 r 3 + ( 0 , 1 , 1 , 0 2 ) r 2 r 3 + ( 0 , 0 , 1 , 1 2 ) r 3 r 4 + ( 0 , 0 , 2 , 0 2 ) r 3 2 + ( 1 , 0 , 0 , 1 2 ) r 1 r 4 + ( 0 , 0 , 2 , 0 2 ) r 3 2 making the simplification of multinomial coefficients we obtain ( r 1 + r 2 + r 3 + r 4 ) 2 = r 1 2 + r 2 2 + r 3 2 + r 4 2 + 2 ( r 1 r 2 + r 1 r 3 + r 1 r 4 + r 2 r 3 + r 2 r 4 + r 3 r 4 ) ∴ r 1 2 + r 2 2 + r 3 2 + r 4 2 = ( k = 1 ∑ 4 r k ) 2 − 2 1 ≤ i < j ≤ 4 ∑ r i r j = ( − a 4 a 3 ) 2 − 2 ( a 4 a 2 ) = 7 2 − 4 = 4 5 where a 4 = 1 , a 3 = 7 , a 2 = 2 , a 1 = 0 , a 0 = − 1 7 2 0 are the coefficients of the given quartic equation.
The next easy way to solve is using Newton-Girard formula
Problem Loading...
Note Loading...
Set Loading...
By Vieta's formula , we have α + β + γ + δ = − 7 and α β + α γ + α δ + β γ + β δ + γ δ = 2 . Since
α 2 + β 2 + γ 2 + δ 2 = ( α + β + γ + δ ) 2 − 2 ( α β + α γ + α δ + β γ + β δ + γ δ ) = ( − 7 ) 2 − 2 ( 2 ) = 4 5