Fun with Range

Algebra Level 4

f ( x ) = 2 x + 2 x + 3 x + 3 x + 5 x + 5 x + 3 \large f(x)=2^{x}+2^{-x}+3^{x}+3^{-x}+5^{x}+5^{-x}+3

What is the range of the function above? Hint: Use the AM-GM Inequality to solve this

[ 3 , ) [3,\infty) All real numbers [ 9 , ] [9,\infty] [ 9 , ) [9,\infty) [ 6 , ) [6,\infty ) ( 6 , ) (6,\infty ) No range

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aryan Sanghi
Jul 31, 2020

Let y = 2 x + 2 x + 3 x + 3 x + 5 x + 5 x y = 2^x + 2^{-x} + 3^x + 3^{-x} + 5^x + 5^{-x}

Using A M G M AM \geq GM

2 x + 2 x + 3 x + 3 x + 5 x + 5 x 6 2 x . 2 x . 3 x . 3 x . 5 x . 5 x 6 \frac{2^x + 2^{-x} + 3^x + 3^{-x} + 5^x + 5^{-x}}{6} \geq \sqrt[^6]{2^x.2^{-x}.3^{x}.3^{-x}.5^x.5^{-x}}

2 x + 2 x + 3 x + 3 x + 5 x + 5 x 6 2 x . 2 x . 3 x . 3 x . 5 x . 5 x 6 = 6 2^x + 2^{-x} + 3^x + 3^{-x} + 5^x + 5^{-x} \geq 6\sqrt[^6]{2^x.2^{-x}.3^{x}.3^{-x}.5^x.5^{-x}} = 6

y 6 \boxed{y \geq 6}

So, f ( x ) = 2 x + 2 x + 3 x + 3 x + 5 x + 5 x + 3 = y + 3 f(x) = 2^x + 2^{-x} + 3^x + 3^{-x} + 5^x + 5^{-x} + 3 = y + 3

y 6 y \geq 6 y + 3 9 y + 3 \geq 9 f ( x ) 9 \boxed{f(x) \geq 9}

Therefore

f ( x ) [ 9 , ) \color{#3D99F6}{\boxed{f(x) \in [9, \infty)}}

Thank you!

Vinayak Srivastava - 10 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...