Fun with Series 7

Algebra Level 4

f ( x ) = 1 1 + x 2 + n = 1 1 1 + ( x + n ω ) 2 + n = 1 1 1 + ( x n ω ) 2 f(x)=\frac{1}{1+x^2}+\sum_{n=1}^{\infty}\frac{1}{1+(x+n\omega)^2}+\sum_{n=1}^{\infty}\frac{1}{1+(x-n\omega)^2}

The function f ( x ) f(x) is defined above where ω > 0 ) \omega>0) . Then f ( x ) f(x) is:


Try my fun series .

p e r i o d i c periodic w i t h with p e r i o d period ω \omega n o n p e r i o d i c non periodic p e r i o d i c periodic w i t h with p e r i o d period 2 ω 2 \omega p e r i o d i c periodic w i t h with p e r i o d period ω 2 {\omega}^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

C Anshul
Jun 23, 2018

Observe f(x)=f(x+w).

May you be more explicit, please?

Paul Romero - 9 months, 4 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...