Fun with sin^6 summation

Geometry Level 1

Give answer with decimal expansion


The answer is 27.625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matthew Reiter
Nov 2, 2014

S = sin 6 1 + sin 6 2 + . . . + sin 6 88 + sin 6 89 S = \sin ^{ 6 }{ 1 } + \sin ^{ 6 }{ 2 } + ... + \sin ^{ 6 }{ 88 } + \sin ^{ 6 }{ 89 }

Keeping in mind that s i n X = c o s ( 90 X ) sinX = cos(90-X) , this means s i n 6 X = c o s 6 ( 90 X ) sin^{ 6 } X = cos^{ 6 } (90-X)

Therefore we have our sum:

S = sin 6 1 + sin 6 2 + . . . + sin 6 44 + sin 6 45 + cos 6 ( 90 46 ) + . . . + cos 6 ( 90 88 ) + cos 6 ( 90 89 ) S = \sin ^{ 6 }{ 1 } + \sin ^{ 6 }{ 2 } + ... + \sin ^{ 6 }{ 44} + \sin ^{ 6 }{ 45 } + \cos^{ 6 }(90 - 46) + ... + \cos^{ 6 }(90 - 88) + \cos^{ 6 }(90 - 89)

Which simplifies to:

S = sin 6 1 + sin 6 2 + . . . + sin 6 44 + sin 6 45 + cos 6 44 + . . . + cos 6 2 + cos 6 1 S = \sin ^{ 6 }{ 1 } + \sin ^{ 6 }{ 2 } + ... + \sin ^{ 6 }{ 44} + \sin ^{ 6 }{ 45 } + \cos^{ 6 }{ 44 } + ... + \cos^{ 6 }{ 2 } + \cos^{ 6 }{ 1 }

Since,

sin 45 = 2 2 \sin45 = \frac{\sqrt{2}}{2} then, sin 6 45 = 1 8 \sin ^{ 6 }{ 45 } = \frac{1}{8} and also,

sin 6 X + cos 6 X = ( 1 3 s i n 2 X c o s 2 X ) \sin ^{ 6 }{ X } + \cos ^{ 6 }{ X } = (1 - 3sin ^{ 2 }{ X }cos ^{ 2 }{ X })

So going back to our sum:

S = sin 6 1 + sin 6 2 + . . . + sin 6 88 + sin 6 89 S = \sin ^{ 6 }{ 1 } + \sin ^{ 6 }{ 2 } + ... + \sin ^{ 6 }{ 88 } + \sin ^{ 6 }{ 89 }

S = ( 1 3 s i n 2 1 c o s 2 1 ) + ( 1 3 s i n 2 2 c o s 2 2 ) + . . . + ( 1 3 s i n 2 44 c o s 2 44 ) + sin 6 45 S = (1 - 3sin ^{ 2 }{ 1 }cos ^{ 2 }{ 1 }) + (1 - 3sin ^{ 2 }{ 2 }cos ^{ 2 }{ 2 }) + ... + (1 - 3sin ^{ 2 }{ 44}cos ^{ 2 }{ 44 }) + \sin ^{ 6 }{ 45 }

Adding all the ones and factoring out a -3: S = 44 + 1 8 3 ( s i n 2 1 c o s 2 1 + s i n 2 2 c o s 2 2 + . . . + s i n 2 44 c o s 2 44 ) S = 44 + \frac{1}{8} -3 (sin ^{ 2 }{ 1 }cos ^{ 2 }{ 1 } +sin ^{ 2 }{ 2 }cos ^{ 2 }{ 2 } + ... + sin ^{ 2 }{ 44}cos ^{ 2 }{ 44 })

Since s i n 2 X = 2 s i n X c o s X sin 2X = 2sinXcosX , lets write the above equation as:

S = 44 + 1 8 3 4 ( 4 s i n 2 1 c o s 2 1 + 4 s i n 2 2 c o s 2 2 + . . . + 4 s i n 2 44 c o s 2 44 ) S = 44 + \frac{1}{8} -\frac{3}{4} (4sin ^{ 2 }{ 1 }cos ^{ 2 }{ 1 } +4sin ^{ 2 }{ 2 }cos ^{ 2 }{ 2 } + ... + 4sin ^{ 2 }{ 44}cos ^{ 2 }{ 44 })

We did this because 4 s i n 2 X c o s 2 X = 2 s i n 2 2 X 4sin^ {2}{ X }cos ^ {2} { X } = 2sin^{2} { 2X }

Therefore our sum can be written, and simplified as:

S = 353 8 3 4 ( s i n 2 2 + s i n 2 4 + . . . + s i n 2 44 + s i n 2 46 + . . . + s i n 2 88 ) S = \frac{353}{8} -\frac{3}{4} (sin ^{ 2 }{ 2 } +sin ^{ 2 }{ 4 } + ... + sin ^{ 2 }{ 44} + sin ^{ 2 }{ 46} + ... + sin ^{ 2 }{ 88})

S = 353 8 3 4 ( s i n 2 2 + s i n 2 4 + . . . + s i n 2 44 + c o s 2 ( 90 46 ) + . . . + c o s 2 ( 90 86 ) + c o s 2 ( 90 88 ) ) S = \frac{353}{8} -\frac{3}{4} (sin ^{ 2 }{ 2 } +sin ^{ 2 }{ 4 } + ... + sin ^{ 2 }{ 44} + cos ^{ 2 }{(90 - 46)} + ... + cos ^ {2} {(90 -86)} + cos ^{ 2 }{(90 - 88)})

S = 353 8 3 4 ( s i n 2 2 + s i n 2 4 + . . . + s i n 2 44 + c o s 2 44 + . . . + c o s 2 4 + c o s 2 2 ) S = \frac{353}{8} -\frac{3}{4} (sin ^{ 2 }{ 2 } +sin ^{ 2 }{ 4 } + ... + sin ^{ 2 }{ 44} + cos ^{ 2 }{44} + ... + cos ^ {2} {4} + cos ^{ 2 }{2})

S = 353 8 3 4 ( s i n 2 2 + c o s 2 2 + s i n 2 4 + c o s 2 4 + . . . + s i n 2 44 + c o s 2 44 ) S = \frac{353}{8} -\frac{3}{4} (sin ^{ 2 }{ 2 } + cos ^{ 2 }{2} +sin ^{ 2 }{ 4 } + cos ^ {2} {4} + ... + sin ^{ 2 }{ 44} + cos ^{ 2 }{44})

And s i n 2 X + c o s 2 X = 1 sin ^{ 2 }{ X} + cos ^{ 2 }{X} = 1 , therefore

S = 353 8 3 4 ( 22 ) S = \frac{353}{8} -\frac{3}{4} (22)

S = 353 8 132 8 S = \frac{353}{8} -\frac{132}{8}

S = 221 8 S = \frac{221}{8}

S = 27.625 S = 27.625

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...