Fun with Surds

Algebra Level 2

If a b = 3 + 8 a - b = 3 + \sqrt{8} and b c = 3 8 b - c = 3 - \sqrt{8} , find the value of a 2 + b 2 + c 2 a b b c c a a^{2} + b^{2} + c^{2} - ab - bc - ca .


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

a c = ( a b ) + ( b c ) = 3 + 8 + 3 8 = 6 a-c=(a-b) +(b-c) =3+\sqrt 8+3-\sqrt 8=6

a 2 + b 2 + c 2 a b b c a c = 1 2 ( ( a b ) 2 + ( b c ) 2 + ( a c ) 2 ) a^2+b^2+c^2-ab-bc-ac=\dfrac 12 \left ((a-b) ^2+(b-c) ^2+(a-c) ^2\right )

= 1 2 ( ( 3 + 8 ) 2 + ( 3 8 ) 2 + 6 2 ) =\dfrac 12 \left ((3+\sqrt 8)^2+(3-\sqrt 8)^2+6^2\right )

= 1 2 ( 2 ( 3 2 + ( 8 ) 2 ) + 36 ) = 17 + 18 = 35 =\dfrac 12 \left (2(3^2+(\sqrt 8)^2)+36\right )=17+18=\boxed {35} .

( a b ) 2 + ( b c ) 2 + ( a b ) ( b c ) = ( 3 + 8 ) 2 + ( 3 8 ) 2 + ( 3 + 8 ) ( 3 + 8 ) a 2 2 a b + b 2 + b 2 2 b c + c 2 + a b c a b 2 + b c = 17 + 2 8 + 17 2 8 + 9 8 a 2 + b 2 + c 2 a b b c c a = 35 \begin{aligned} (a-b)^2 + (b-c)^2 + (a-b)(b-c) & = (3+\sqrt 8)^2 + (3-\sqrt 8)^2 + (3+\sqrt 8)(3+\sqrt 8) \\ a^2 - 2ab + b^2 + b*2 - 2bc + c^2 + ab - ca - b^2 + bc & = 17 + 2\sqrt 8 + 17 - 2\sqrt 8 + 9 - 8 \\ \implies a^2 + b^2 + c^2 - ab - bc - ca & = \boxed {35} \end{aligned}

Chris Lewis
Nov 8, 2020

Squaring the two given equations gives us most of the terms we want, except a c ac .

So first, adding the equations, a c = 6 a-c=6

Now squaring and summing, ( a b ) 2 + ( b c ) 2 + ( a c ) 2 = ( 3 + 8 ) 2 + ( 3 8 ) 2 + 6 2 = 70 (a-b)^2+(b-c)^2+(a-c)^2=(3+\sqrt8)^2+(3-\sqrt8)^2+6^2=70

And also ( a b ) 2 + ( b c ) 2 + ( a c ) 2 = 2 ( a 2 + b 2 + c 2 a b b c a c ) (a-b)^2+(b-c)^2+(a-c)^2=2\left(a^2+b^2+c^2-ab-bc-ac\right)

So a 2 + b 2 + c 2 a b b c a c = 35 a^2+b^2+c^2-ab-bc-ac=\boxed{35}

An easy triple to check this with is ( a , b , c ) = ( 3 , 8 , 3 ) (a,b,c)=(3,-\sqrt8,-3) .

Cai Junxiang
Nov 9, 2020

First observe that ( a b ) ( b c ) = 9 8 = 1 a b b 2 a c + b c (a - b)(b - c) = 9 - 8 = 1 \rightarrow ab - b^{2} - ac + bc

Secondly, a c = 6 a - c = 6 , and the required expression can be written as ( a c ) 2 ( a b b 2 a c + b c ) = 36 1 = 35 (a - c)^{2} - (ab - b^{2} - ac + bc) = 36 - 1 = \boxed{35}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...