If a − b = 3 + 8 and b − c = 3 − 8 , find the value of a 2 + b 2 + c 2 − a b − b c − c a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( a − b ) 2 + ( b − c ) 2 + ( a − b ) ( b − c ) a 2 − 2 a b + b 2 + b ∗ 2 − 2 b c + c 2 + a b − c a − b 2 + b c ⟹ a 2 + b 2 + c 2 − a b − b c − c a = ( 3 + 8 ) 2 + ( 3 − 8 ) 2 + ( 3 + 8 ) ( 3 + 8 ) = 1 7 + 2 8 + 1 7 − 2 8 + 9 − 8 = 3 5
Squaring the two given equations gives us most of the terms we want, except a c .
So first, adding the equations, a − c = 6
Now squaring and summing, ( a − b ) 2 + ( b − c ) 2 + ( a − c ) 2 = ( 3 + 8 ) 2 + ( 3 − 8 ) 2 + 6 2 = 7 0
And also ( a − b ) 2 + ( b − c ) 2 + ( a − c ) 2 = 2 ( a 2 + b 2 + c 2 − a b − b c − a c )
So a 2 + b 2 + c 2 − a b − b c − a c = 3 5
An easy triple to check this with is ( a , b , c ) = ( 3 , − 8 , − 3 ) .
First observe that ( a − b ) ( b − c ) = 9 − 8 = 1 → a b − b 2 − a c + b c
Secondly, a − c = 6 , and the required expression can be written as ( a − c ) 2 − ( a b − b 2 − a c + b c ) = 3 6 − 1 = 3 5
Problem Loading...
Note Loading...
Set Loading...
a − c = ( a − b ) + ( b − c ) = 3 + 8 + 3 − 8 = 6
a 2 + b 2 + c 2 − a b − b c − a c = 2 1 ( ( a − b ) 2 + ( b − c ) 2 + ( a − c ) 2 )
= 2 1 ( ( 3 + 8 ) 2 + ( 3 − 8 ) 2 + 6 2 )
= 2 1 ( 2 ( 3 2 + ( 8 ) 2 ) + 3 6 ) = 1 7 + 1 8 = 3 5 .