Function

Algebra Level 5

Real numbers x x and y y are such that if a a and b b are distinct then f ( a ) f ( b ) f(a) \ne f(b) and:

f ( x ) f ( x + y ) = f ( 2 x + y ) x f ( x + y ) + x f(x)f(x+y)=f(2x+y)-xf(x+y)+x

Find f ( 150 ) f(150) .


The answer is -149.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 14, 2017

Let P ( x , y ) : f ( x ) f ( x + y ) = f ( 2 x + y ) x f ( x + y ) + x P(x,y): f(x)f(x+y) = f(2x+y) - xf(x+y)+x

P ( x , x ) : f ( x ) f ( 2 x ) = f ( 3 x ) x f ( 2 x ) + x . . . ( 1 ) P ( 2 x , x ) : f ( 2 x ) f ( x ) = f ( 3 x ) 2 x f ( x ) + 2 x . . . ( 2 ) ( 2 ) ( 1 ) : 0 = 0 2 x f ( x ) + x f ( 2 x ) + x f ( 2 x ) = 2 f ( x ) 1 . . . ( 3 ) f ( 0 ) = 2 f ( 0 ) 1 Putting x = 0 f ( 0 ) = 1 \begin{array} {lrll} P(x,x): & f(x)f(2x) & = f(3x) - xf(2x)+x &...(1) \\ P(2x,-x): & f(2x)f(x) & = f(3x) - 2xf(x)+2x &...(2) \\ (2)-(1): & 0 & = 0 - 2xf(x) + xf(2x) + x \\ & \implies f(2x) & = 2 f(x) - 1 & ...(3) \\ & f(0) & = 2 f(0) - 1 \quad \quad \small \color{#3D99F6} \text{Putting }x = 0 \\ & \implies f(0) & = 1 \end{array}

P ( x , 0 ) : f ( x ) f ( x ) = f ( 2 x ) x f ( x ) + x f 2 ( x ) = 2 f ( x ) 1 x f ( x ) + x f 2 ( x ) ( 2 x ) f ( x ) + 1 x = 0 A quadratic equation of f ( x ) ( f ( x ) 1 ) ( f ( x ) 1 + x ) = 0 As f ( a ) f ( b ) if a b f ( x ) = 1 x \begin{aligned} P(x,0): \qquad f(x)f(x) & = f(2x) - xf(x) + x \\ f^2 (x) & = 2f(x) - 1 - xf(x) + x \\ f^2 (x) - (2-x) f(x) + 1 - x & = 0 \quad \quad \small \color{#3D99F6} \text{A quadratic equation of }f(x) \\ (f(x)-1)(f(x)-1+x) & = 0 \quad \quad \small \color{#3D99F6} \text{As }f(a) \ne f(b) \text{ if }a \ne b \\ \implies f(x) & = 1-x \end{aligned}

Therefore, f ( 150 ) = 1 150 = 149 f(150) = 1-150 = \boxed{-149}

f ( x ) = 1 x f(x)=1-x

Why must f(x) = 1-x be true? Is this the only solution to f(x)?

Pi Han Goh - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...