Function and Triangle are Best Friend

Algebra Level 4

A function is defined as f ( 1 ) = 2017 f(1) = 2017 and f ( 1 ) + f ( 2 ) + + f ( n ) = n 2 f ( n ) f(1) + f(2) + \cdots + f(n) = n^2 f(n) for all n > 1 n > 1 . Find f ( 2017 ) f(2017) .

If you answer can be expressed as a b \frac{a}{b} , where a a and b b are coprime positive integers, compute a + b a+b .


The answer is 1010.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jason Chrysoprase
Jan 27, 2017

f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( n 1 ) + f ( n ) = n 2 f ( n ) f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( n 1 ) = ( n 1 ) 2 f ( n 1 ) f ( n ) = n 2 f ( n ) ( n 1 ) 2 f ( n 1 ) n 2 f ( n ) f ( n ) = ( n 1 ) 2 f ( n 1 ) f ( n ) ( n 2 1 ) = ( n 1 ) 2 f ( n 1 ) f ( n ) = ( n 1 ) 2 f ( n 1 ) ( n 2 1 ) f ( n ) = ( n 1 ) ( n 1 ) f ( n 1 ) ( n + 1 ) ( n 1 ) f ( n ) = ( n 1 ) f ( n 1 ) ( n + 1 ) \begin{aligned} f(1)+f(2)+f(3)+…+f(n-1)+f(n)&=n^2 f(n) \\ f(1)+f(2)+f(3)+…+f(n-1) &= (n-1)^2 f(n-1) \\ \implies f(n)&= n^2 f(n)-(n-1)^2 f(n-1) \\ n^2 f(n) - f(n)&= (n-1)^2 f(n-1) \\ f(n) (n^2-1)&=(n-1)^2 f(n-1)\\ f(n) &= \frac{(n-1)^2 f(n-1)}{(n^2 -1)} \\ f(n) &= \frac{(n-1)(n-1)f(n-1)}{(n+1)(n-1)} \\ f(n) &= \frac{(n-1)f(n-1)}{(n+1)}\\ \end{aligned}

So f ( n ) = n 1 n + 1 × f ( n 1 ) f(n) = \frac{n-1}{n+1} \times f(n-1) f ( 1 ) = 2017 1 f ( 2 ) = 2017 3 f ( 3 ) = 2017 6 f ( 4 ) = 2017 10 f ( 5 ) = 2017 15 f ( 6 ) = 2017 21 \begin{aligned} f(1) &= \frac{2017}{1}\\ f(2) &= \frac{2017}{3}\\ f(3) &= \frac{2017}{6}\\ f(4)& = \frac{2017}{10}\\ f(5) &= \frac{2017}{15}\\ f(6) &= \frac{2017}{21}\\ \end{aligned} Notice how the denominator was in fact triangular numbers, with a n = n ( n + 1 ) 2 a_n = \frac{n(n+1)}{2} . So,

f ( 2017 ) = 2017 2017 ( 2018 ) 2 = 2017 × 2 2017 ( 2018 ) = 2 2018 = 1 1009 f(2017) = \large \frac{2017}{\frac{2017(2018)}{2}} = 2017 \times \frac{2}{2017(2018)} = \frac{2}{2018} = \color{#D61F06}{\boxed{\frac{1}{1009}}}

the denominators are triangular numbers because

f ( n ) = ( n 1 ) n + 1 × f ( n 1 ) = ( n 1 ) ( n 2 ) ( n + 1 ) ( n ) × f ( n 2 ) = ( n 1 ) × ( n 2 ) × . . . . . 2 × 1 ( n + 1 ) × n × . . . . . . . 4 × 3 × f ( 1 ) = 2 ( n + 1 ) × n × f ( 1 ) f(n)=\dfrac{(n-1)}{n+1}\times f(n-1)=\dfrac{(n-1)(n-2)}{(n+1)(n)}\times f(n-2)=\dfrac{(n-1)\times (n-2)\times .....2\times 1}{(n+1)\times n\times .......4\times 3}\times f(1)=\dfrac {2}{(n+1)\times n}\times f(1)

Anirudh Sreekumar - 4 years, 4 months ago
Chew-Seong Cheong
Jan 27, 2017

Let S n = k = 1 n f ( k ) \displaystyle S_n = \sum_{k=1}^n f(k) , then we have:

S n = n 2 f ( n ) S n 1 + f ( n ) = n 2 f ( n ) S n 1 = ( n 2 1 ) f ( n ) S n = ( ( n + 1 ) 2 1 ) f ( n + 1 ) S n 1 + f ( n ) = ( n 2 + 2 n ) f ( n + 1 ) ( n 2 1 ) f ( n ) + f ( n ) = n ( n + 2 ) f ( n + 1 ) f ( n + 1 ) = n f ( n ) n + 2 \begin{aligned} S_n & = n^2 f(n) \\ S_{n-1} + f(n) & = n^2 f(n) \\ S_{n-1} & = (n^2-1) f(n) \\ \implies S_n & = ((n+1)^2 -1) f(n+1) \\ S_{n-1} + f(n) & = (n^2+2n)f(n+1) \\ (n^2-1) f(n) + f(n) & = n(n+2)f(n+1) \\ \implies f(n+1) & = \frac {nf(n)}{n+2} \end{aligned}

The first few n n shows that f ( n ) = 4034 n ( n + 1 ) f(n) = \dfrac {4034}{n(n+1)} . Let prove by induction that the claim is true for all n 1 n \ge 1 .

The Proof

  • For n = 1 n=1 , f ( 1 ) = 4034 1 2 = 2017 f(1) = \dfrac {4034}{1\cdot 2} = 2017 as given, therefore, the claim is true for n = 1 n=1 .

  • Assuming the claim is true for n n , then:

f ( n + 1 ) = n ( f ( x ) n + 2 = n n + 2 4034 n ( n + 1 ) = 4034 ( n + 1 ) ( n + 1 + 1 ) \begin{aligned} \quad f({\color{#3D99F6}n+1}) & = \frac {n(f(x)}{n+2} \\ & = \frac n{n+2} \cdot \frac {4034}{n(n+1)} \\ & = \frac {4034}{({\color{#3D99F6}n+1)}({\color{#3D99F6}n+1}+1)} \end{aligned}

\quad The claim is also true for n + 1 n+1 , therefore, the claim is true for all n 1 n \ge 1 .

Now, we have f ( 2017 ) = 4034 2017 2018 = 1 1009 f(2017) = \dfrac {4034}{2017\cdot 2018} = \dfrac 1{1009} . Therefore, a + b = 1 + 1009 = 1010 a+b = 1 + 1009 = \boxed{1010} .

Justin Tuazon
Apr 29, 2017

f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( n ) = n 2 f ( n ) ( n 1 ) 2 f ( n 1 ) + f ( n ) = n 2 f ( n ) ( n 1 ) 2 f ( n 1 ) = ( n 1 ) ( n + 1 ) f ( n ) ( n 1 ) f ( n 1 ) = ( n + 1 ) f ( n ) f ( n ) f ( n 1 ) = n 1 n + 1 f ( 2 ) f ( 1 ) f ( 3 ) f ( 2 ) f ( 4 ) f ( 3 ) f ( 2016 ) f ( 2015 ) f ( 2017 ) f ( 2016 ) = f ( 2017 ) f ( 1 ) = f ( 2017 ) 2017 f ( 2017 ) = 2017 1 3 2 4 3 5 2015 2017 2016 2018 = 2017 1 2 2017 2018 = 1 1009 a + b = 1 + 1009 = 1010 \\ f(1)+f(2)+f(3)+...+f(n)={ n }^{ 2 }f(n)\\ { \left( n-1 \right) }^{ 2 }f(n-1)+f(n)={ n }^{ 2 }f(n)\\ \\ { \left( n-1 \right) }^{ 2 }f(n-1)=\left( n-1 \right) \left( n+1 \right) f(n)\\ (n-1)f(n-1)=(n+1)f(n)\\ \frac { f(n) }{ f(n-1) } =\frac { n-1 }{ n+1 } \\ \\ \frac { f(2) }{ f(1) } \cdot \frac { f(3) }{ f(2) } \cdot \frac { f(4) }{ f(3) } \cdot \cdots \cdot \frac { f(2016) }{ f(2015) } \cdot \frac { f(2017) }{ f(2016) } =\frac { f(2017) }{ f(1) } =\frac { f(2017) }{ 2017 } \\ \\ f(2017)=2017\cdot \frac { 1 }{ 3 } \cdot \frac { 2 }{ 4 } \cdot \frac { 3 }{ 5 } \cdot \cdots \cdot \frac { 2015 }{ 2017 } \cdot \frac { 2016 }{ 2018 } =\frac { 2017\cdot 1\cdot 2 }{ 2017\cdot 2018 } =\frac { 1 }{ 1009 } \\ \\ \boxed { \quad \therefore \quad a+b=1+1009=1010\quad } \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...