Function Busters

Algebra Level 3

A function f : R R f: \mathbb R\to \mathbb R satisfies the relation

f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) 3 f ( x ) + 6 x f(x)f(y)=f(2xy+3)+3f(x+y)-3f(x)+6x

where x x and y y are reals. Find the value of f ( 2009 ) f(2009) .


The answer is 4021.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chris Lewis
Mar 25, 2020

We have f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) 3 f ( x ) + 6 x f(x)f(y) = f(2xy+3) + 3f(x+y) - 3f(x) + 6x

Switching x x and y y , we also have f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) 3 f ( y ) + 6 y f(x)f(y) = f(2xy+3) + 3f(x+y) - 3f(y) + 6y

It follows that 6 x 3 f ( x ) 6x-3f(x) is a constant; say (for convenience) 6 x 3 f ( x ) = 3 c 6x-3f(x)=3c . So f ( x ) = 2 x c f(x)=2x-c .

Substituting into the original functional equation, we find c = 3 c=-3 , or f ( x ) = 2 x + 3 f(x)=2x+3 , so in particular f ( 2009 ) = 4021 f(2009)=\boxed{4021} .

Superb solution

Mohammed Imran - 1 year, 2 months ago
Mark Hennings
Mar 25, 2020

Putting y = 0 y=0 we see that f ( x ) f ( 0 ) = f ( 3 ) + 3 f ( x ) 3 f ( x ) + 6 x f ( 0 ) f ( x ) = f ( 3 ) + 6 x \begin{aligned} f(x)f(0) & = \; f(3) + 3f(x) - 3f(x) + 6x \\ f(0)f(x) & = \; f(3) + 6x \end{aligned} for all x x . Thus f ( 3 ) = f ( 0 ) 2 f(3) = f(0)^2 . If f ( 0 ) = 0 f(0) = 0 we would deduce that 6 x = 0 6x = 0 for all x x . Thus f ( 0 ) 0 f(0) \neq 0 , and so f ( x ) f(x) is a nonconstant linear function.

Putting x = 0 x=0 we obtain f ( 0 ) f ( y ) = f ( 3 ) + 3 f ( y ) 3 f ( 0 ) [ f ( 0 ) 3 ] f ( y ) = f ( 0 ) [ f ( 0 ) 3 ] \begin{aligned} f(0)f(y) & = \; f(3) + 3f(y) - 3f(0) \\ [f(0)-3]f(y) & = \; f(0)[f(0)-3] \end{aligned} Since f f is not constant, we deduce that f ( 0 ) = 3 f(0) = 3 , so that f ( x ) = 3 + 2 x f(x) = 3 + 2x for all x x , and hence f ( 2009 ) = 4021 f(2009) = \boxed{4021} .

Congrats!!!

Mohammed Imran - 1 year, 2 months ago

Best solution!!!

Mohammed Imran - 1 year, 2 months ago
Chew-Seong Cheong
Mar 25, 2020

Given f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) 3 f ( x ) + 6 x f(x)f(y)= f(2xy+3)+3f(x+y) - 3f(x) + 6x , then

{ f ( 0 ) 2 = f ( 3 ) + 3 f ( 0 ) 3 f ( 0 ) + 0 = f ( 3 ) . . . ( 1 ) f ( x ) f ( 0 ) = f ( 3 ) + 3 f ( x ) 3 f ( x ) + 6 x = f ( 3 ) + 6 x . . . ( 2 ) f ( 0 ) f ( x ) = f ( 3 ) + 3 f ( x ) 3 f ( 0 ) . . . ( 3 ) \begin{cases} \begin{aligned} f(0)^2 & = f(3) + 3f(0) - 3f(0) + 0 = f(3) & ...(1) \\ f(x)f(0) & = f(3) + 3f(x) - 3f(x) + 6x = f(3) + 6x & ...(2) \\ f(0)f(x) & = f(3) + 3f(x) - 3f(0) & ...(3) \end{aligned} \end{cases}

( 2 ) = ( 3 ) : f ( x ) = 2 x + f ( 0 ) f ( 3 ) = 6 + f ( 0 ) f 2 ( 0 ) = 6 + f ( 0 ) f 2 ( 0 ) f ( 0 ) 6 = 0 ( f ( 0 ) 3 ) ( f ( 0 ) + 2 ) = 0 \begin{aligned} (2)=(3): \quad f(x) & = 2x + f(0) \\ \implies f(3) & = 6 + f(0) \\ f^2(0) & = 6 + f(0) \\ f^2(0) - f(0) - 6 & = 0 \\ (f(0) - 3)(f(0) + 2) & = 0 \end{aligned}

{ f ( 0 ) = 3 f ( x ) = 2 x + 3 f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) 3 f ( x ) + 6 x acceptable f ( 0 ) = 2 f ( x ) = 2 x 2 f ( x ) f ( y ) f ( 2 x y + 3 ) + 3 f ( x + y ) 3 f ( x ) + 6 x unacceptable \implies \begin{cases} f(0) = 3 & \implies f(x) = 2x + 3 & \implies f(x)f(y) \blue = f(2xy+3)+3f(x+y) - 3f(x) + 6x & \small \blue{\text{acceptable}} \\ f(0) = -2 & \implies f(x) = 2x -2 & \implies f(x)f(y) \red \ne f(2xy+3)+3f(x+y) - 3f(x) + 6x & \small \red{\text{unacceptable}} \end{cases}

Therefore f ( x ) = 2 x + 3 f ( 2009 ) = 4021 f(x) = 2x + 3 \implies f(2009) = \boxed{4021} .

brilliant solution Chew sir

Mohammed Imran - 1 year, 2 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...