A function f : R → R satisfies the relation
f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) − 3 f ( x ) + 6 x
where x and y are reals. Find the value of f ( 2 0 0 9 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Superb solution
Putting y = 0 we see that f ( x ) f ( 0 ) f ( 0 ) f ( x ) = f ( 3 ) + 3 f ( x ) − 3 f ( x ) + 6 x = f ( 3 ) + 6 x for all x . Thus f ( 3 ) = f ( 0 ) 2 . If f ( 0 ) = 0 we would deduce that 6 x = 0 for all x . Thus f ( 0 ) = 0 , and so f ( x ) is a nonconstant linear function.
Putting x = 0 we obtain f ( 0 ) f ( y ) [ f ( 0 ) − 3 ] f ( y ) = f ( 3 ) + 3 f ( y ) − 3 f ( 0 ) = f ( 0 ) [ f ( 0 ) − 3 ] Since f is not constant, we deduce that f ( 0 ) = 3 , so that f ( x ) = 3 + 2 x for all x , and hence f ( 2 0 0 9 ) = 4 0 2 1 .
Congrats!!!
Best solution!!!
Given f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) − 3 f ( x ) + 6 x , then
⎩ ⎪ ⎨ ⎪ ⎧ f ( 0 ) 2 f ( x ) f ( 0 ) f ( 0 ) f ( x ) = f ( 3 ) + 3 f ( 0 ) − 3 f ( 0 ) + 0 = f ( 3 ) = f ( 3 ) + 3 f ( x ) − 3 f ( x ) + 6 x = f ( 3 ) + 6 x = f ( 3 ) + 3 f ( x ) − 3 f ( 0 ) . . . ( 1 ) . . . ( 2 ) . . . ( 3 )
( 2 ) = ( 3 ) : f ( x ) ⟹ f ( 3 ) f 2 ( 0 ) f 2 ( 0 ) − f ( 0 ) − 6 ( f ( 0 ) − 3 ) ( f ( 0 ) + 2 ) = 2 x + f ( 0 ) = 6 + f ( 0 ) = 6 + f ( 0 ) = 0 = 0
⟹ { f ( 0 ) = 3 f ( 0 ) = − 2 ⟹ f ( x ) = 2 x + 3 ⟹ f ( x ) = 2 x − 2 ⟹ f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) − 3 f ( x ) + 6 x ⟹ f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) − 3 f ( x ) + 6 x acceptable unacceptable
Therefore f ( x ) = 2 x + 3 ⟹ f ( 2 0 0 9 ) = 4 0 2 1 .
brilliant solution Chew sir
Problem Loading...
Note Loading...
Set Loading...
We have f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) − 3 f ( x ) + 6 x
Switching x and y , we also have f ( x ) f ( y ) = f ( 2 x y + 3 ) + 3 f ( x + y ) − 3 f ( y ) + 6 y
It follows that 6 x − 3 f ( x ) is a constant; say (for convenience) 6 x − 3 f ( x ) = 3 c . So f ( x ) = 2 x − c .
Substituting into the original functional equation, we find c = − 3 , or f ( x ) = 2 x + 3 , so in particular f ( 2 0 0 9 ) = 4 0 2 1 .