Define f ( x ) = x 2 − 8 x − 2 x 2 + 1 2 x + 1 8 , find the value of 3 0 6 1 4 ( x = 1 ∏ 1 0 0 f ( x ) ) ( n = 9 7 ∏ 1 0 6 n 2 − 1 8 1 ) 7
Next: Function Challenge 3!!
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, we'll look at x = 1 ∏ 1 0 0 f ( x ) , In the function f ( x ) = x 2 − 8 x − 2 x 2 + 1 2 x + 1 8 , substitute x with x + 1 0 then you have f ( x + 1 0 ) = x 2 + 1 2 x + 1 8 x 2 + 3 2 x + 2 3 8 , notice the denominator of f ( x + 1 0 ) and the numerator of f ( x ) are the same, so when they are multiplied together, which is f ( x ) × f ( x + 1 0 ) , we could cancel out the numerator of f ( x ) with the denominator of f ( x + 1 0 ) . Similarly, we could cancel out the numerator of f ( x + 1 ) with the denominator of f ( x + 1 1 ) , and so as the numerator of f ( x + 2 ) with the denominator of f ( x + 1 2 ) and so on. Thus, the numerator of the product is left with numerators from f ( 9 1 ) to f ( 1 0 0 ) , and the denominator of the product is left with denominators from f ( 1 ) to f ( 1 0 ) .
Now let's concentrate on the denominator of the product. The denominator of the product is x = 1 ∏ 1 0 ( x 2 − 8 x − 2 ) . Notice that if we substitute x with x + 4 , we get x = − 3 ∏ 6 ( x 2 − 1 8 ) and can easily get the product is 9 2 × 1 4 3 × 1 7 2 × 1 8 2 .
On the other hand, the numerator of the product is x = 9 1 ∏ 1 0 0 ( x 2 + 1 2 x − 1 8 ) , we substitue x with x − 6 and we have x = 9 7 ∏ 1 0 6 ( x 2 − 1 8 ) = n = 9 7 ∏ 1 0 6 ( n 2 − 1 8 ) .
Hence, 3 0 6 1 4 ( x = 1 ∏ 1 0 0 f ( x ) ) ( n = 9 7 ∏ 1 0 6 n 2 − 1 8 1 ) 7 = 3 0 6 9 2 × 1 4 2 × 1 7 2 × 1 8 2 1 7 = 8 8 2
There are some computational errors. First, x = − 3 ∏ 6 ( x 2 − 1 8 ) = 9 2 × 1 4 3 × 1 7 2 × 1 8 2 , not 9 2 × 1 4 3 × 1 7 2 × 1 8 2 × 7 2 .
Second, when you shift, you should get x = 9 1 ∏ 1 0 0 ( x 2 + 1 2 x + 1 8 ) = x = 9 7 ∏ 1 0 6 ( x 2 − 1 8 ) , not ∏ n = 8 5 9 4 ( x 2 − 1 8 ) .
Log in to reply
Oh, sorry, I didn't notice that, anyway, thanks!
@Tan Kenneth Please let me know what to update the answer to. Thanks.
Problem Loading...
Note Loading...
Set Loading...
f ( x ) = x 2 − 8 x − 2 x 2 + 1 2 x + 1 8 B y o b s e r v i n g t h e a b o v e e q u a t i o n a n d t h e e x t r a t e r m i n v o v i n g ′ n ′ i n t h e d e n o m i n a t o r o f t h e q u e s t i o n , o n e c a n c o n c l u d e t h a t t h e a b o v e e q u a t i o n m u s t b e m o d i f i e d s o m e h o w s o a s t o c a n c e l o u t s o m e t e r m s . f ( x ) = x 2 − 8 x + ( 1 6 − 1 6 ) − 2 x 2 + 1 2 x + 1 8 + ( 1 8 − 1 8 ) f ( x ) = ( x − 4 ) 2 − 1 8 ( x + 6 ) 2 − 1 8 N o w t h a t l o o k s a l o t m o r e l i k e t h e d e n o m i n a t o r o f t h e s e c o n d t e r m u n d e r t h e r o o t i n t h e d e n o m i n a t o r . U s i n g t h e a b o v e e q u a t i o n , o n e c a n s e e t h a t t h e d e n o m i n a t o r o f f ( 1 1 ) c a n c e l s o u t t h e n u m e r a t o r o f f ( 1 ) . A n d c o n t i n u e s u n t i l t h e d e n o m i n a t o r o f f ( 1 0 0 ) c a n c e l s o u t t h e n u m e r a t o r o f f ( 9 0 ) . T h e r e f o r e , t h e r e m a i n i n g t e r m s a r e : x = 1 ∏ 1 0 0 ( x − 4 ) 2 − 1 8 ( x + 6 ) 2 − 1 8 = x = 1 ∏ 1 0 [ ( x − 4 ) 2 − 1 8 1 ] x = 9 1 ∏ 1 0 0 [ ( x + 6 ) 2 − 1 8 ] C h a n g i n g t h e v a r i a b l e x i n t o ( x + 6 ) , x = 9 1 ∏ 1 0 0 [ ( x + 6 ) 2 − 1 8 ] = x = 9 7 ∏ 1 0 6 [ x 2 − 1 8 ] W h i c h c a n c e l s o u t w i t h n = 9 7 ∏ 1 0 6 n 2 − 1 8 1 . W e a r e l e f t w i t h : x = 1 ∏ 1 0 [ ( x − 4 ) 2 − 1 8 1 ] = ( − 9 ) 2 1 × ( − 1 4 ) 2 1 × ( − 1 7 ) 2 1 × ( − 1 8 ) 2 1 × ( − 2 ) 1 × ( − 7 ) 1 A n s w e r = 3 0 6 1 4 × x = 1 ∏ 1 0 [ ( x − 4 ) 2 − 1 8 1 ] 7 = 3 0 6 × ( 9 ) 1 × ( 1 4 ) 1 × ( 1 7 ) 1 × ( 1 8 ) 1 7 = 8 8 2