Function Challenge 3!

Algebra Level 4

Define f ( x ) = x 2 x 1 2 f(x)=x^2-x-\frac{1}{2} , find the value of x = 1 50 f ( 2 x ) x = 1 50 f ( 2 x 1 ) . \displaystyle \sum_{x=1}^{50}{f(2x)}-\displaystyle \sum_{x=1}^{50}{f(2x-1)}.


The answer is 5000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kenneth Tan
Aug 13, 2014

In the function f ( x ) = x 2 x 1 2 f(x)=x^2-x-\frac{1}{2} , substitute x x with x + 1 x+1 then you have f ( x + 1 ) = x 2 + x 1 2 f(x+1)=x^2+x-\frac{1}{2} , notice that f ( x + 1 ) f ( x ) = 2 x f(x+1)-f(x)=2x , so x = 1 50 f ( 2 x ) x = 1 50 f ( 2 x 1 ) = x = 1 50 [ f ( 2 x ) f ( 2 x 1 ) ] = f ( 2 ) f ( 1 ) + f ( 4 ) f ( 3 ) + + f ( 100 ) f ( 99 ) = 2 ( 1 + 3 + 5 + 7 + + 99 ) = 2 + 6 + 10 + 14 + + 198 = 50 × ( 2 + 198 ) 2 = 5000 \begin{aligned}&\displaystyle \sum_{x=1}^{50}{f(2x)}-\displaystyle \sum_{x=1}^{50}{f(2x-1)}\\&=\displaystyle \sum_{x=1}^{50}{[f(2x)-f(2x-1)]}\\&=f(2)-f(1)+f(4)-f(3)+\ldots+f(100)-f(99)\\&=2(1+3+5+7+\ldots+99)\\\\&=2+6+10+14+\ldots+198\\&=\frac{50\times(2+198)}{2} \\&=5000 \end{aligned}

Zack Yeung
May 18, 2015

find the simplify equation of f (2x)- f( 2x-1)....which is 4x-2.... sub x= 1 you get 2....... subx= 2 you get 6.........d=4, a = 2 , n =50...use arimethic progression equation n/2(2a+(n-1)d) you will get the answer

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...