A simple differential equation

Calculus Level 3

Given a function f ( x ) f(x) that satisfies f ( 2 ) = 1 3 f(2)= -\dfrac{1}{3} and f ( x ) = d f ( x ) d x = x ( f ( x ) ) 2 f '(x) = \dfrac {df(x)}{dx} = x \left(f(x)\right)^2 x R \forall x \in \mathbb R .

Find f ( 1 ) f(1) ?

- 2 3 \frac{2}{3} - 11 6 \frac{11}{6} - 7 6 \frac{7}{6} - 2 9 \frac{2}{9}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Denis Kartachov
Aug 16, 2018

d y d x = x y 2 \frac{dy}{dx} = x y^2 d y y 2 = x d x \frac{dy}{y^2} = xdx f ( 1 ) 1 / 3 d y y 2 = 1 2 x d x \int_{f(1)}^{-1/3} \frac{dy}{y^2} = \int_{1}^{2} x dx [ 1 y ] f ( 1 ) 1 / 3 = 1 2 [ x 2 ] 1 2 - \bigg[ \frac{1}{y} \bigg]_{f(1)}^{-1/3} = \frac{1}{2} \bigg[ x^2 \bigg]_{1}^{2} ( 1 1 / 3 1 f ( 1 ) ) = 1 2 ( 2 2 1 2 ) - \bigg( \frac{1}{-1/3} - \frac{1}{f(1)} \bigg) = \frac{1}{2} \bigg( 2^2 - 1^2 \bigg) f ( 1 ) = 2 3 f(1) = - \frac{2}{3}

Chew-Seong Cheong
Aug 17, 2018

Let y = f ( x ) y = f(x) . Then we have:

f ( x ) = x ( f ( x ) ) 2 d y d x = x y 2 1 y 2 d y = x d x 1 y 2 d y = x d x 1 y = x 2 2 + C where C is the constant of integration. 1 1 3 = 2 2 2 + C Since f ( 2 ) = 1 3 , C = 1 1 f ( x ) = x 2 2 + 1 1 f ( 1 ) = 1 2 + 1 f ( 1 ) = 2 3 \begin{aligned} f'(x) & = x\left(f(x)\right)^2 \\ \frac {dy}{dx} & = x y^2 \\ \frac 1{y^2} dy & = x \ dx \\ \int \frac 1{y^2} dy & = \int x \ dx \\ - \frac 1y & = \frac {x^2}2 + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ - \frac 1{-\frac 13} & = \frac {2^2}2 + C & \small \color{#3D99F6} \text{Since } f(2) = - \frac 13, \implies C = 1 \\ - \frac 1{f(x)} & = \frac {x^2}2 + 1 \\ \implies - \frac 1{f(1)} & = \frac 12 + 1 \\ f(1) & = \boxed{-\dfrac 23} \end{aligned}

Russell Ngo
Aug 16, 2018

Start off by dividing both sides by f ( x ) 2 f(x)^2 to get:

f ( x ) [ f ( x ) ] 2 = x \frac{f'(x)}{[f(x)]^2}=x

\Rightarrow 1 f ( x ) = x 2 2 + c -\frac{1}{f(x)}=\frac{x^2}{2}+c ( 1 ) (1) (integrating both sides w.r.t x x )

Since f ( 2 ) = 1 3 f(2)=-\frac{1}{3} , we can plug this into ( 1 ) (1) to find c

c = 1 \Rightarrow c=1 1 f ( x ) = x 2 2 + 1 \Rightarrow -\frac{1}{f(x)} = \frac{x^2}{2} + 1 ( 2 ) (2)

Plugging x = 1 x=1 into ( 2 ) (2) and after a little bit of simple algebra should give f ( 1 ) = 2 3 f(1)=-\frac{2}{3}

Done! A bite-sized problem to start off the day, I guess

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...