Function Game

Algebra Level 4

{ f ( 1 ) = 1 f ( 2 n ) = n f ( n ) \large \begin{cases} f(1)=1 \\ f(2n)=n \; f(n) \end{cases}

Let f : N N f : \mathbb N \to \mathbb N be a function satisfying the above properties. Find f ( 2 100 ) f(2^{100}) .

Notation : N \mathbb N denotes the set of natural numbers .

2 100 2^{100} 2 4950 2^{4950} 1 1 2 9999 2^{9999} 2 99 2^{99}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jul 3, 2016

Use f ( 2 n ) = n f ( n ) \color{#D61F06}{\small{f(2n)=nf(n)}} repeatedly: f ( 2 n ) = f ( 2 2 n 1 ) = 2 n 1 f ( 2 n 1 ) = 2 n 1 2 n 2 f ( 2 n 2 ) = 2 n 1 2 n 2 2 n 3 f ( 2 n 3 ) = 2 ( n 1 ) + ( n 2 ) + ( n 3 ) + + 1 f ( 1 ) 1 = 2 n ( n 1 ) 2 \begin{aligned}f(2^n)=f(2\cdot 2^{n-1})=&2^{n-1}f(2^{n-1})\\=&2^{n-1} 2^{n-2}f(2^{n-2})\\=&2^{n-1}2^{n-2}2^{n-3}f(2^{n-3})\\&\cdots\\&\cdots\\=&2^{(n-1)+(n-2)+(n-3)+\cdots +1}\underbrace{f(1)}_{\color{#3D99F6}{1}}\\=& 2^{\dfrac{n(n-1)}2}\end{aligned}

Hence , f ( 2 n ) = 2 n ( n 1 ) 2 f(2^n)=2^{\dfrac{n(n-1)}2} f ( 2 100 ) = 2 100 ( 100 1 ) 2 = 2 4950 f(2^{100})=2^{\dfrac{100(100-1)}2}=\boxed{2^{4950}}

Nice one ....+1

Chirayu Bhardwaj - 4 years, 11 months ago

Log in to reply

Thanks... :-)

Rishabh Jain - 4 years, 11 months ago

From the first few f ( 2 k ) f(2^k) , where k k is non-negative integer, we notice that f ( 2 k ) = 2 k ( k 1 ) 2 f(2^k) = 2^{\frac {k(k-1)}2} . Let us prove that the claim f ( 2 k ) = 2 k ( k 1 ) 2 f(2^k) = 2^{\frac {k(k-1)}2} is true for all k k .

  1. For k = 0 k=0 , f ( 2 0 ) = f ( 1 ) = 2 0 ( 0 1 ) 2 = 1 f(2^0) = f(1) = 2^{\frac {0(0-1)}2} = 1 , as given, therefore, the claim is true for k = 0 k=0 .

  2. Assuming the claim is true for k k , then:

f ( 2 k + 1 ) = f ( 2 2 k ) = 2 k f ( 2 k ) = 2 k 2 k ( k 1 ) 2 = 2 k ( k + 1 ) 2 = 2 ( k + 1 ) ( k + 1 1 ) 2 \begin{aligned} \quad \quad f(2^{k+1}) & = f(2\cdot 2^k) = 2^kf(2^k) = 2^k \cdot 2^{\frac {k(k-1)}2} = 2^{\frac {k(k+1)}2} = 2^{\frac {(\color{#3D99F6}{k+1})(\color{#3D99F6}{k+1}-1)}2} \end{aligned}

\quad Therefore, the claim is also true for k + 1 k+1 and hence all k k .

Therefore, f ( 2 100 ) = 2 100 × 99 2 = 2 4950 f(2^{100}) = 2^{\frac {100\times 99}2} = \boxed{2^{4950}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...