Function game

Geometry Level 4

f ( x ) = 2015 x 2015 + 1 + 2016 x 2016 + 1 2017 x 2017 + 1 f(x)=\frac{2015}{x^{2015}+1}+\frac{2016}{x^{2016}+1}-\frac{2017}{x^{2017}+1}

Find the value of f ( tan 1 5 ) + f ( tan 3 0 ) + f ( tan 4 5 ) + f ( tan 6 0 ) + f ( tan 7 5 ) f(\tan 15^\circ)+f(\tan 30^\circ)+f(\tan 45^\circ)+f(\tan 60^\circ)+f(\tan 75^\circ) .


The answer is 5035.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

m x m + 1 + m x m + 1 = m ( x m + 1 + x m + 1 1 + x m + x m + 1 ) = m . T a n 75 = 1 T a n 15 , T a n 60 = 1 T a n 30 , a n d T a n 45 = 1. g i v e n e x p r e s s i o n = 2015 + 2015 + 1 2 2015 + 2016 + 2016 + 1 2 2016 2017 + 2017 + 1 2 2017 = 5 2 ( 2015 + 2016 2017 = 5035. \dfrac m {x^m+1}+\dfrac m {x^{-m}+1}=m \left (\dfrac {x^{-m}+1+x^m+1}{1+x^m+x^{-m}+1}\right )\ \ \ =\ \ \ m.\\ Tan 75 =\frac 1 {Tan 15}, \ \ \ \ Tan 60=\frac 1 {Tan 30}, \ \ \ and\ \ \ Tan45\ =\ 1.\\ \therefore\ given \ expression\ =2015+2015+\frac12*2015\ \ +\ \ 2016+2016+\frac12*2016\ \ -\ \ 2017+2017+\frac12*2017\\ =\frac 5 2 *\ (2015+2016\ -\ 2017= \Large\ \ \ \ \color{#D61F06}{5035.}

Tommy Li
Jul 3, 2016

You want to ask :

f ( x ) = 2015 x 2015 + 1 + 2016 x 2016 + 1 \large f(x) = \frac{2015}{x^{2015}+1}+\frac{2016}{x^{2016}+1} \huge \color{#D61F06}{-} 2017 x 2017 + 1 \large\frac{2017}{x^{2017}+1}

f ( tan 1 5 ) + f ( tan 3 0 ) + f ( tan 4 5 ) + f ( tan 6 0 ) + f ( tan 7 5 ) f(\tan 15^\circ)+f(\tan 30^\circ)+f(\tan 45^\circ)+f(\tan 60^\circ)+f(\tan 75^\circ)

= ( 2015 + 2016 + 2017 ) × 2 + 2015 + 2016 2017 2 = 5035 = (2015+2016+2017) \times 2 + \frac{2015+2016-2017}{2} =5035

sorry, i have corrected it,thank you

choi chakfung - 4 years, 11 months ago

(2015+2016-2017)(2)+(2015+2016-2017)/2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...